Digital twin as a Service (DTaaS) Software Platform

Prasad Talasila prasad.talasila@ece.au.dk

- 1) Requirements for Digital Twin Platforms
- 2) A Conceptual Framework
- 3) DTaaS software platform
- 4) Implementation Status

1) Requirements for Digital Twin Platforms

- 1) User Requirements
- 2) Technical Requirements
- 3) Example
- 2) A Conceptual Framework
- 3) DTaaS software platform
- 4) Implementation Status

A PEEK INTO USER ROLES?

DT User

Type of User	Create DT Assets	Configure DT	Reconfigure DT	Execute DT	Analyze Results	Save DT
SME Manufacturers	\checkmark	\checkmark				\checkmark
SME Customers			\checkmark	\checkmark	\checkmark	\checkmark
Software Consultants	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Researchers	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark
Asset Provider			DTCreator			

AARHUS UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Π

26 APRIL 2023

1) Requirements for Digital Twin Platforms

- 1) User Requirements
- 2) Technical Requirements
- 3) Example
- 2) A Conceptual Framework
- 3) DTaaS software platform
- 4) Implementation Status

AARHUS UNIVERSITY DEPARTMENT OF ELECTRICAL AND COM ENGINEERING

Four Categories of Reusable Assets

Data: (users)

Farmers using Agrointelli Robotti Customers of FabMetrics Wood drying plants using Prodesa equipment

Models: (manufacturers)

Agrointelli (agricultural robot manufacturing factory and 3D CAD of agricultural robot) Prodesa (manufacturer of wood pellet dryers) FabMetrics (manufacturer of glass making equipment)

Microservice and Algorithms: (software

vendors)

Maestro - co-simulation orchestration engine by Aarhus University CAELIA – ROM solver and Data Analysis by ITA-INNOVA DDDSimulator - discrete event simulator and 3D visualizer by TTS **Ristra** – Numerical simulator for mechanical structures by IGD, Fraunhofer

SAS a lifecycle assessment tool by SUPSI

On-premises (FabMetrics)

SZTAKI (CloudBroker)

EGI (Distributed Cluster Computing Infrastructure)

Public Cloud Services (Azure, AWS)

1) Requirements for Digital Twin Platforms

- 1) User Requirements
- 2) Technical Requirements
- 3) Example
- 2) A Conceptual Framework
- 3) DTaaS software platform
- 4) Implementation Status

WOOD PELLET DRYING PLANT - PRODUCTION OPTIMIZATION

ENGINEERING

WOOD PELLET DRYING PLANT – COMPETING **MODELS: CFD MODEL Plant data**

Rotary Dryer CFD Model

Ansys Fluent CFD Simulator (outside DIGITbrain platform)

PRASAD TALASILA 26 APRIL 2023

SOFTWARE ENGINEERING AND COMPUTING SYSTEMS

WOOD PELLET DRYING PLANT – COMPETING MODELS: CO-SIMULATION MODELS

ENGINEERING

1) Requirements for Digital Twin Platforms

- 2) A Conceptual Framework
- 3) DTaaS software platform
- 4) Implementation Status

DIGITAL TWIN LAYERS: A PROPOSAL

NOTE: This is not a strictly layered architecture

WHAT IS INSIDE THE DIGITAL TWIN LAYERS?

User Interaction

A STEP TOWARDS DEFINING DIGITAL TWINS...

DEPARTMENT OF ELECTRICAL AND COMPUTER

ENGINEERING

SOFTWARE ENGINEERING AND COMPUTING SYSTEMS

- 1) Requirements for Digital Twin Platforms
- 2) A Conceptual Framework
- 3) DTaaS software platform
 - 1) System Architecture and Design
 - 2) Digital Twin Lifecycle Manager
- 4) Implementation Status

SYSTEM ARCHITECTURE

WHAT DO EACH OF THE SYSTEM COMPONENTS DO?

System Component	Responsibilities
security	Authentication and authorization
Accounting	Use of reusable assets and the platform resources
Visualization	Pre-defined or custom visualizations, dashboards etc.
Data	Data archives, Databases etc.
Reusable Assets	Models, Tools, Functions and Digital Twins available for reuse

WHAT DO EACH OF THE SYSTEM COMPONENTS DO? (2)

System Component	Responsibilities
DT Lifecycle Manager	Manage digital twins through all their lifecycle stages
Execution Manager	Instantiate and execute digital twins on selected virtualized environments like docker containers, virtual machines, cloud infrastructure.

C4 Level 2 Diagram for Reusable Assets, DT Lifecycle Manager and Execution Manager

NOTE: This diagram hides interactions with external systems

C4 Level 2 Diagram for Reusable Assets, DT Lifecycle Manager and Execution Manager

- 1) Requirements for Digital Twin Platforms
- 2) A Conceptual Framework
- 3) DTaaS software platform
 - 1) System Architecture and Design
 - 2) Digital Twin Lifecycle Manager
- 4) Implementation Status

WHAT ARE DIFFERENT LIFECYCLE PHASES A DIGITAL TWIN?

lifecycle manager

- 1) Requirements for Digital Twin Platforms
- 2) A Conceptual Framework
- 3) DTaaS software platform
- 4) Implementation Status

WHAT IS THE CURRENT STATUS?

WHAT IS THE CURRENT STATUS?

Component	Current Status of Microservice	Off the Shelf Software	Temporary Replacement
Web Application	Under Development		
Reusable Components	Under Development		local files, gitlab
Security		Gitlab Oauth	
Gateway		Traefik	
Execution Manager	Under Development	MiCADO, Ansible, Vagrant	Static Scripts
Communication Facilities	Integrated into Execution Manager, , Microservice Discovery (Mesh / Consul)	TCP Gateway servicing SSH, RabbitMQ, MQTT	SSH, RabbitMQ, MQTT
Databases	Not Started		InfluxDB
Visualization	Not Started		Grafana
Accounting	Not Started		
DT Lifecycle	Under Development		
AARHUS		PRASAD TALASILA	

UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

EXISTING FEATURES OF DTAAS

DEVELOPMENT PRIORITIES IN IN DTAAS PROJECT

REFERNCES

- Peter Gorm Larsen, Increasing Dependability of Cyber-Physical Systems by using Digital Twins (Presentation), March 2023.
- Sohn Fitzgerald, Claudio Gomes and Peter Gorm Larsen (Editors), The Engineering of Digital Twins (book draft), May 2023
- Wagg, D., Worden, K. orcid.org/0000-0002-1035-238X, Barthorpe, R. et al. (1 more author) (2020) Digital twins: State-of-theart future directions for modelling and simulation in engineering dynamics applications. ASCE - ASME Journal of Risk and Uncertainty in Engineering Systems, Part B. Mechanical Engineering, 6 (3). 030901. ISSN 2332-9017.
- https://accord-global.com/software_engineering_services.html (system software development processes), accessed: 26-April-2023
- INCOSE Systems Engineering Handbook, 4th Edition, 2015.
- Images: <u>Docker</u>, InfluxDB, Grafana, <u>RabbitMQ</u>, <u>MQTT</u>, <u>VSCode</u>, <u>Jupyter</u>, <u>xfce desktop</u>, <u>Linux Terminal</u>, <u>git</u>, <u>OpenModelica</u>, <u>Matlab</u>, <u>Gitlab</u>
- DIGITbrain deliverables A EU Horizon 2020 project under grant number 952071.
- Data Ingestion and Processing and platform comparison
 Qi, Q., Tao, F., Hu, T., Anwer, N., Liu, A., Wei, Y., Wang, L., & Nee, A. Y. (2021). Enabling technologies and tools for digital twin.
 Journal of Manufacturing Systems, 58 (PB), 3–21. <u>https://doi.org/10.1016/j.jmsy.2019.10.001</u>
- Fei Tao, Meng Zhang, Yushan Liu, A.Y.C. Nee, Digital twin driven prognostics and health management for complex equipment, CIRP Annals, Volume 67, Issue 1, 2018, Pages 169-172, ISSN 0007-8506 (5 dimensional digital twin)
- Tekinerdogan, Bedir, and Cor Verdouw. "Systems architecture design pattern catalog for developing digital twins." Sensors 20.18 (2020): 5103.

