
Special Issue Article

Simulation

Simulation: Transactions of the Society for

Modeling and Simulation International

2025, Vol. 101(3) 287–311

� The Author(s) 2024

DOI: 10.1177/00375497241298653

journals.sagepub.com/home/sim

Composable digital twins on Digital
Twin as a Service platform

Prasad Talasila1 , Cláudio Gomes1 , Lars B Vosteen2, Hannes Iven2,
Martin Leucker2, Santiago Gil1 , Peter H Mikkelsen1,
Eduard Kamburjan3 and Peter G Larsen1

Abstract
Establishing digital twins is a non-trivial endeavor especially when users face significant challenges in creating them from
scratch. Ready availability of re-usable models, data, functions, and tool assets, can help with creation and use of digital
twins. A number of frameworks/platforms exist to facilitate creation and use of digital twins. In this paper, we propose
such a platform to manage digital twin assets, create composable digital twins from re-usable assets and make the digital
twins available as a service to other users. The proposed platform supports the management of re-usable assets, storage,
provision of compute infrastructure, communication, monitoring, and execution tasks. Two case studies are used to
demonstrate the capabilities of this platform.

Keywords
Digital twin, physical twin, platform, service, automation, life cycle, composition, composable DTs, reuse, configuration,
firefighter DT

1. Introduction

Digital Twins (DTs) are used to add value to Cyber-

Physical Systems (CPSs) of interest, typically called

Physical Twins (PTs). At the heart of a DT is a collection

of models describing characteristics of PT, which is used

to provide additional services for it. Many such services

can be imagined, and it is the vision of these capabilities

that makes DTs so valuable: the main motivation for DTs

is to enable real-time monitoring, analysis, and simulation

of a PT. This technology facilitates improved decision-

making, predictive maintenance, and optimisation in vari-

ous industries, including manufacturing,1 healthcare, urban

planning, and energy storage.2 DTs enhance efficiency,

reliability, and sustainability by providing a comprehen-

sive understanding of complex systems and supporting

data-driven insights. They represent a natural stepping

stone from the massive availability of sensors and data in

different industries, and it is our conviction that DT archi-

tecture is common across many such industries.

However, the implementation of DTs is still a major

endeavor, requiring a significant effort from stakeholders

with different disciplinary backgrounds. For instance,

establishing the communication between the PT and the

DT requires potential knowledge of computer networks

and architecture as well as programming skills, while

building predictive models of the PT requires potential

knowledge of the corresponding physics domain.

Furthermore, in order to promote re-usability, a DT may

marshal a collection of data sources and sinks, generic

functions, and tools. Delivering such a DT can be a com-

plex task; coordinating and orchestrating the numerous

services and models remains a challenge. This is espe-

cially true because of the need for several different model-

ing approaches, including information models, geometry,

physics, and behaviors.3,4

In this work, we present the Digital Twin as a Service

platform (DTaaS). It aims to both (1) speed up develop-

ment of DTs and (2) simplify its management during oper-

ations based on the notion of re-usable DT assets: data,

functions, models, and other software components that can

be reused by multiple DTs. A number of DT platforms

have been proposed to reduce the implementation effort in

1Centre for Digital Twins, DIGIT, Department of Electrical and

Computer Engineering, Aarhus University, Denmark
2Institute for Software Engineering and Programming Languages,

Universität zu Lübeck, Germany
3Department of Informatics, University of Oslo, Norway

Corresponding author:

Prasad Talasila, Centre for Digital Twins, DIGIT, Department of Electrical

and Computer Engineering, Aarhus University, Finlandsgade 22, 8200

Aarhus N, Denmark.

Email: prasad.talasila@ece.au.dk

https://doi.org/10.1177/00375497241298653
https://journals.sagepub.com/home/sim
http://crossmark.crossref.org/dialog/?doi=10.1177%2F00375497241298653&domain=pdf&date_stamp=2024-12-01


relation to the structural aspects of DTs,5 and some also

recognize re-usability as a major challenge, but these plat-

forms that support the creation and execution of DTs from

composable components6,7 enforce certain implementation

styles and are not service oriented. Recently, a similar idea

of establishing a DTaaS platform has been proposed,8 but

with a primary focus on services related to Augmented

Reality.

Our DTaaS platform targets not only re-usability in the

design stage of DTs, but also re-usability at operations—

different life cycle phases of a DT require different assets.

DTaaS gives a practical platform to manage DTs through-

out their respective life cycle.

1.1. Contribution

Our main contributions are (1) a precise definition of DT

assets and DT life cycle, (2) an architecture for DT design

and operations based on these definitions, and (3) an

implementation of this architecture with an evaluation on

the incubator9 DT and firefighter DT of the O5G-N-IoT

project.10

1.2. Prior work

This work is an extension of previous work from the co-

authors which has introduced the foundations of DTaaS,11

its nomenclature and life cycle phases for DTs deployed in

the platform.

This manuscript introduces the definition of a re-usable

DT asset, an extended and adopted architecture to support

this definition, and two realistic case studies as an evalua-

tion. The current manuscript also expands on prior work

by providing details about how two case studies have

gained from establishing DTs using DTaaS. From those

case studies, we describe the benefits of re-usable assets,

the use of different life cycle phases, the realization of the

DTs and their performance evaluation. Moreover, we pro-

vide a more detailed comparison with existing platforms,

and introduce two new re-usable commonly used DT ser-

vices (visualization and alerts).

1.3. Structure

The rest of this paper is structured as follows. We first

introduce Background and Related Work in DT platforms.

Afterwards, we introduce the two different Case Studies (a

DT for food fermentation and a DT for rescue mission

support in firefighting), which are consequently used as

running examples for illustration. Then we give the defini-

tions and illustrations for Re-usable Digital Twin Assets,

Digital Twin Definition, and Phases in Digital Twin Life

Cycle, before we give an overview of the system architec-

ture and its platform implementation. We provide feature

comparison of DTaaS with other DT platforms in platform

implementation. Afterwards, we illustrate the implementa-

tion of case studies on the platform and describe the per-

formance evaluation. The paper ends with discussion and

future work and concluding remarks.

2. Background and related work
2.1. DT definition and realisation

In abstract, DT is a digital representation of a physical

object (PO), which influences the future behavior of the

PT. However, this definition hides the variants and possi-

ble interpretations.9,12 In this manuscript, we refer to DT

as a software running remotely in conjunction with cloud

services that collectively add value to an existing PT

through the use of models and simulations.13 Some of the

existing literature proposes three subcategories of DTs:14

(1) Digital Model (DM), in which PO and DO have no

automated exchange of data, (2) Digital Shadow, where

PO emits data to the DO automatically, and finally (3) DT,

in which case, there exist a two-way automated data

exchange between the DO and PO. Only in this case, the

PO is referred to as a PT. Nevertheless, a DT should be

created to accomplish certain business goals, that is, in

terms of optimisation or provision of insights,15 and there-

fore, the inclusion of simulation models, inference and

reasoning mechanisms, and data analysis become essen-

tial.16 The orchestration for including these components

toward achieving the business goals of DTs is called the

DT constellation.17

A five-level DT architecture has been proposed previ-

ously.18 On the lowest level (1) Smart Connection, resides

the data exchange between DT and PT; (2) Data-to-infor-

mation conversion, concerns conversion and aggregation

of data for monitoring and to make it useful for (3) Cyber,

which is the central information hub and source of analysis

across multiple data sources. At level (4) Cognition, the

knowledge acquired from lower levels are made available

for decision-making, and finally at level (5) Configuration,

is where decisions or reconfiguration from the DT is fed

back to the PT, to make it self-adaptable. Thus, to create a

DT, infrastructure, tools, models, and configurations must

address each level.

In the DT platforms discussed next, we focus on those

that promote the implementation of the (3) Cyber and

higher layers, choosing to leave out platforms whose goal

is to enable the Smart Connection and Data-to-information

conversion layers, as platforms falling in this category

have been surveyed before.16,19

2.2. Re-usability in DT implementations

Completely new development of a DT for each PT is not

necessary if the DT or its parts are re-usable.20 DTs should

therefore be engineered and operated by reusing the parts

previously developed for other DTs. Toward this end, we

288 Simulation: Transactions of the Society for Modeling and Simulation International 101(3)



highlight two approaches, detailed next: asset reuse and

code generation.

2.2.1. Asset reuse. A prior work in the HUBCAP and

DIGITbrain platforms21 shows that a DT can be structured

to be composed of re-usable assets other than models. The

DIGITbrain project22 introduces the notion of four re-

usable assets: data, models,4 algorithms, and behaviors.

The software tools and frameworks have also been

included in the algorithms asset. Each behavior contains a

pair of model and algorithm. The data and behaviors assets

are selected and configured to create new DTs. Such re-

usability can also be seen in both medical, manufacturing,

and maritime DTs.6,23–26 The Digital Twin Platform Stack

Architectural Framework of Digital Twin Consortium27

proposes data, multiple representations of models (both

static and computable), algorithms and services as re-

usable assets.

Knowledge graphs28 have been recognized early as a pos-

sible technology that can be used to configure DTs.29

Subsequently, several DT architectures have used knowl-

edge graphs. The SINDIT30 is a component-based frame-

work and architecture for rapid prototyping of DTs that uses

knowledge graphs to represent the relationship between

assets. A few cognitive twins31 have used ontologies to con-

nect simulation units32 and component description.33

2.2.2. Code generation. An alternative to re-usable assets is

the use of code generation techniques, informed by

domain-specific languages (DSLs) descriptions, to gener-

ate DTs.20 The proposed DSLs describe domain, data, tag-

ging, constraint, and graphical user interface (GUI) as

input to a set of generation tools, to create the application-

independent parts of a DT platform. The proposed plat-

form can then be tailored by a domain expert for a specific

purpose, using a web-based front-end.

We argue that code generation approaches are comple-

mentary to asset reuse since the configuration of such

assets can be generated by means of a DSL. Several com-

mercial and open-source projects propose DSLs to specify

composition of a DT as a configuration of models, rela-

tions, and data exchange.34

Microsoft Azure’s Digital Twin Description Language

(DTDL)35 and Eclipse Vortolang36 provide object-oriented

modeling capabilities, such as class, property, method, and

association, as well at specifying data exchange end-

points.34 The commercial platforms have come up with

their own DT DSLs.5 Examples include DTDL for Azure

DTs, Eclipse Hono,37 Eclipse Ditto,38 and also AWS IoT

twinmaker.39 Other platforms, such as Eclipse BaSyX40

are designed based on the Asset Administration Shell

(AAS) meta-model, which is one of the outcomes of the

German initiative Reference Architectural Model Industrie

4.0 (RAMI 4.0),41 which recently turned into the IEC

63278-1:2023 Standard.42 Some of these platforms and

frameworks have been previously analyzed.5,16 A feature

comparison of these platforms and DTaaS is available in

Comparison with Existing Platforms.

2.3. Comparison with related work

DTaaS takes a complementary approach across different

DT frameworks and platforms. Multiple prior sur-

veys16,43,44 compare existing DT frameworks based on

system architecture, interoperability, scalability, reproduc-

tion of previous results, and composition. DTaaS intends

to provide the infrastructure where complementary ser-

vices can be orchestrated to run and maintain DTs with a

well-defined DT asset configuration. Hence, there can be

coexistence of existing DT platforms and DTaaS.45

DTaaS provides two additional features not available in

comparable DT platforms, namely, (1) providing private

workspaces for authoring and verification of re-usable

assets and (2) enabling sharing of DT assets to foster col-

laboration and re-usability.

Some of the challenges in the theory-to-practice transi-

tion of DT platforms are the support for different operating

phases of the DT and the orchestration of services.16,46

DTaaS development process addresses these challenges by

following successful software engineering practices such

as microservices, DevOps, and GitOps, which have found

their way into the development and operation of DT plat-

forms.47,48 In addition, it can include extended functional-

ities to perform verification of the published assets with

DevOps49 and provisioning of DT execution infrastructure

by using Git workflows.50

In DTaaS, the user is presented with two ways to work

with a DT. In the simplest form, a pre-existing pre-pack-

aged DT is made available on the platform. For example, a

DT can be realized as a set of tightly coupled services that

exchange messages and stream data to/from a PT. Some of

these services can execute models to provide their services.

This form of DT is consistent with the DT implemented for

an incubator machine.9,51 In this case, the DT as a whole is

re-usable. However, the services and the embedded models

are tightly coupled preventing their reuse. The need for

more enhanced re-usability motivates the second realiza-

tion of DTs which is the focus of this paper. In this paper, a

DT is realized as a set of re-usable assets are categorized as

Data assets, Model, Function, and Tools. A key innovation

in our platform is that these four categories of assets,

detailed later in Re-usable Digital Twin Assets, can be

declared in the platform by the user and made available to

be reused by other users wishing to build DTs.

2.4. Monitoring of DTs

Monitoring of DTs and there by their linked PTs is one of

the use cases for DTs. Runtime monitoring tools are

Talasila et al. 289



suitable for creating monitors especially from safety prop-

erties defined on either DTs or PTs. The Temporal Stream-

based Specification Language (TeSSLa)52 has been used to

integrate monitoring into the described firefighter DT.

TeSSLa refers to both a specification language and an

associated tool-chain developed within a community-

driven open-source initiative.53

The fundamental principle of TeSSLa lies in its ability

to describe transformations of data streams from inputs to

outputs. It can be used within DTs to monitor (1) data

from PT and (2) predictions of DT. In both cases, the

deviations can be reported to either users or to decision-

making software.

TeSSLa specifications are constituted by a set of input

stream declarations. The specification defines derived

streams created by applying specific operators to the

input and previously defined streams. Some of these

derived streams are designated as the specification’s out-

put streams. TeSSLa provides libraries and supports the

creation of macros. Macros are user-defined stream oper-

ations constructed from the core operations or other

macros, thereby aiding the specification of complex

properties. TeSSLa specifications allow for the creation

of advanced output streams, including statistical data,

with timestamps for events and support compiling into

monitors binary, executable monitors that may be inte-

grated into DTs.

3. Case studies
3.1. Incubator

The incubator PT is a box containing a heater and a fan

connected to a controller that can turn on and off the hea-

ter/fan. The controller is supported by temperature sensors

placed inside the box. The incubator has a single require-

ment which is to save energy if the user forgets to close the

lid, or simply misplaces it. The incubator PT is used to pro-

duce tempeh,54 which is a food produced by growing mold

around soybeans. The original method for producing tem-

peh, discovered in Indonesia, consists of: (1) Hydration of

soybeans: Soybeans are soaked either overnight in cool

water or for a shorter period in hot water. (2) Removal of

skins: The hydrated beans are rubbed together with water,

either before or after cooking, to remove skins. The loo-

sened skins float away with the water. (3) Partial cooking:

The beans are partially cooked by steaming or boiling,

retaining firmness. (4) Inoculation: After cooking, all

liquid is drained, and the beans are inoculated with scrap-

ings from a previous fermentation. (5) Fermentation: The

inoculated beans are wrapped in banana leaves and placed

in a warm location to ferment. Mold mycelia bind the

beans into a compact cake, and enzymic digestion softens

individual beans. (6) Further processing: Raw tempeh can

be sliced and dried, roasted, cooked in soup, or deep-fried

before consumption.

The incubator is designed to support the fermentation

process, where the user is expected to open the box lid to

inspect its contents and determine whether the fermenta-

tion has been concluded. Figure 1 shows an example tem-

peh production process at the beginning (left), halfway

through (middle), and finished (right). As can be seen, the

mold mycelia in white grows around the soybeans, con-

suming them and becoming a compact cake. What makes

this case study deceivingly simple is the fact that at its

highest growth rate the tempeh switches from being a heat

sink into a heat source,54 effectively changing the

dynamics of the system. This effect varies substantially

from batch to batch because it is a biological system and

depends on the number of factors such as the amount of

starter mold as well as its genetics. Detecting the open lid

is just a simplified use case of the DT used in this paper to

illustrate the DTaaS platform.

Figure 1. Example fermentation of tempeh using the incubator PT at the beginning (left), halfway through (middle), and finished
(right).

290 Simulation: Transactions of the Society for Modeling and Simulation International 101(3)



3.2. Firefighter

The firefighting scenario, part of the O5G-N-IoT project,10

aims to enhance decision-making and operational safety in

emergency response situations. Firefighters equipped with

self-contained breathing apparatuses (SCBAs), including

oxygen tanks, operate in hazardous, rapidly changing

environments. This scenario presents various challenges

that necessitate quick, informed decisions based on accu-

rate, real-time information.

Current firefighting practices involve firefighters periodi-

cally reporting their oxygen tank pressure to a mission com-

mander. This method suffers from delays in information

updates and the potential for human error, hindering real-

time situational awareness. In contrast, a firefighter DT

offers continuous, real-time monitoring and automatically

updating crucial data like oxygen levels and firefighter loca-

tions. Using a firefighter DT significantly improves response

strategies, adapting quickly to changes in the operation.

The primary requirements55 for the firefighter DT are

continuous monitoring of firefighters’ oxygen levels and

locations within the building, providing actionable insights

to the mission commander based on real-time data, and

ensuring the safety of firefighters by predicting oxygen

depletion and recommending safe exit routes. The primary

challenge is ensuring firefighter safety while maximizing

operational efficiency, which involves continuously moni-

toring SCBA oxygen levels and navigating through the

building using real-time data. The firefighter DT and the

coupled PT can also be used to simulate emergency

missions.

The firefighter DT described in this paper requires the

existence of localization services and the continued valid-

ity of the building model. The building under fire likely

undergoes structural deterioration and transformation. If

the changes in the building significantly deviate from the

building model used in the firefighter DT, then the predic-

tions made by the DT become invalid. Another limitation

could be the over-reliance on a robust localization service

in a very dynamic environment (building under fire). The

current version of firefighter DT is not capable of handling

intermittency in localization service. Further explanation

on the limitations of the firefighter DT in terms of data col-

lection, necessary prerequisites, and scope are available in

a previous publication.55

4. Re-usable DTassets

In the following sections, we introduce the core notions

needed for an architecture for a DT platform that facili-

tates reuse of different models, tools, and other heteroge-

neous components:

� The DT assets, which represent the smallest ele-

ments of a DT that can be reused.

� The Digital Twin Definition itself, and its composi-

tion from DT assets and services as DT

configuration.
� The Phases in Digital Twin Life Cycle, and their

relation to DTs.
� The System Architecture that connects all these.

The relation between these concepts is shown in Figure 2.

Let us turn to re-usable DT assets first. DTaaS treats

DTs as having re-usable assets. In short, a DT asset is the

smallest element of a DT that can be reused. These assets

are put together and configured in a certain way. We use

four categories of assets: data (D), model (M), function

(F), and tool (T). This section provides explanations for

categorisation of DT assets.

The data (D) asset refers to data sources and/or sinks

available to a DT. Typical examples of data sources are

sensor measurements from the PT and test data provided

by manufacturers for calibration of models. Typical exam-

ples of data sinks are visualization software, external user

software, and data storage services. There exist special out-

puts such as events and commands which are akin to con-

trol outputs from a DT. These control outputs usually go to

the PT, but they can also go to another DT.56

The model (M) assets are used to describe different

aspects of a PT and its environment, at different levels of

abstraction. Therefore, it is possible to have multiple mod-

els for the same PT. For example, a flexible robot used in

a car production plant may have structural model(s) which

will be useful in tracking the wear and tear of parts. It can

have a behavioral model(s) describing the safety guaran-

tees provided by the robot manufacturer. It can also have a

functional model(s) describing the part manufacturing cap-

abilities of the robot. Models have inputs, outputs, states,

and parameters, as well as initial values for states, follow-

ing the nomenclature of the Functional Mockup Interface

(FMI)57 standard.

The function (F) assets are primarily responsible for

pre- and post-processing of data. The data to DT come

from either PT or databases. These data are used for eva-

luation of models. Given that a DT might have multiple

models, the data (and its format) required are not going to

be the same for all of them. This observation is acutely true

in cases of models developed long after data have been

Figure 2. Relations between central concepts.

Talasila et al. 291



captured. Another case is that of normalization and unit

conversion of data; well-implemented pre-processing func-

tions help with this task. In the same vein, post-processing

functions help with the conversion of model outputs into

valid control inputs to PT. One such example is that of

controlling a machine speed based on predictions of a

machine learning model. The model provides normalized

(say zero to one) prediction which must be converted into

actuator input for the machine.

The software tools and frameworks (in short, tools)

contain implementations of engineering domain-specific

or generic computer algorithms. A few examples of

domain-specific algorithms are: SIMPLE (computational

fluid dynamics), Barycentric method (graph drawing),

SPICE and Xyce (electronic circuit simulation), ant colony

optimisation (genetics), and generative adversarial net-

works (machine learning). A few examples of generic

algorithms are: Newtons method (numerical), Bubble sort,

and Strassen matrix multiplication. Domain-specific tools

such as Maestro CoE58 contain implementation algorithms

for conducting co-simulation. Same is the case with

OpenFOAM59 and TensorFlow.60 On the contrary,

MATLAB61 is an example of a tool that has implementa-

tions of algorithms coming from many engineering

domains.

These tools are executed on top of a computing plat-

form, that is, an operating system, or virtual machines

(VMs) like Java Virtual Machine, or inside Docker con-

tainers. The tools are used to create, evaluate, and analyze

models. Most models require tools to evaluate them in the

context of data inputs. There exist cases where models and

tools are combined. The combined entity is run in the same

way a tool is run.

4.1. Incubator

Let us now investigate the assets used in the incubator case

study. Figure 3 provides an overview, and we detail the

different kinds of assets next.

The incubator DT therefore has the single requirement:

to save energy if the user forgets to close the lid, or simply

misplaces it. This requirement is implemented by the fol-

lowing DT services:

� Temperature Prediction—Responsible for predict-

ing the average temperature in the box at time

t + H from the average temperature, control

actuation, and room temperature, at time t. This

service is triggered whenever a new control actua-

tion is issued.

Figure 3. Summary of the assets used in the incubator running example.

292 Simulation: Transactions of the Society for Modeling and Simulation International 101(3)



� Lid Open/Closed Detection—Detect and signals,

whether the incubator lid has been opened or

closed.

The above services work together to fulfill the energy sav-

ing requirement as follows:

1. The open lid detection service compares the tem-

perature predictions with the actual temperature,

and when there is a deviation, it signals the lid as

being open.

2. The supervisor then re-configures the controller

accordingly to save energy by placing it in a low

power mode.

We refrain from giving more details about how these dif-

ferent services coordinate, which is explored in prior

work,9 and focus on the assets used in the incubator DT.

The data assets are an InfluxDB time-series database

and a RabbitMQ broker. The InfluxDB time-series data-

base acts both as data store and visualization service. The

RabbitMQ endpoint acts as bidirectional communication

broker between PT and DT.

An example function is the calculation of the average

between the two temperature sensors installed inside the

box. If analogue temperature sensors were to be used, one

would also need smoothing functions to eliminate the noise

from the temperature measurements.

The models are:

4.1.1. Plant models. The incubator case study uses four dif-

ferent models for the plant itself, each for a different

aspect.

� 2-Parameter Model: A simple scalar ordinary dif-

ferential equation (ODE) representing the plant

dynamics. It takes as inputs the room temperature,

the state of the heater, and returns as an output the

average temperature of the air volume inside the

box. It contains two parameters related to the box-

walls heat conductivity and air heat-capacity.
� 4-Parameter Model: A plant dynamic model (ODE)

that takes as inputs the room temperature, the state

of the heater, and returns as an output the average

temperature of the air volume inside the box, as

well as the temperature of the heating element.
� ANN Model: A neural network–based model, which

takes as inputs the room temperature, the state of

the heater, the previous average temperature of the

air volume inside the box, and returns as output the

average temperature of the air volume inside the

box.
� ANN State Estimation Model: A neural network–

based model, which takes as inputs the room

temperature, the state of the heater, the previous

average temperature of the air volume inside the

box, and returns as output the average temperature

of the air volume inside the box as well as the tem-

perature of the heating element.

4.1.2. Controller model. A controller model (state machine),

which takes as input the average temperature of the air vol-

ume and outputs the state of the heater.

4.1.3. PT model. A hybrid automata model. The input is the

room temperature, and the set of parameters is the union of

the four-parameter model and the controller state machine

model.

4.1.4. Environment model. A simple algebraic model

Tr =A Btð Þ+C representing the temperature of the room

as a function of the time (in seconds). The parameters are

A,B,C.

4.1.5. PT + environment model. A model coupling the PT

and Environment models.

Finally, tools such as the numerical solver from

SciPy,62 and the neural network framework PyTorch63 are

used.

4.2. Firefighter

The firefighter DT continuously monitors self-contained

breathing apparatuses (SCBA) pressure levels and firefigh-

ter locations. If the oxygen level is deemed too low in

relation to the fastest escape route, the DT alerts the indi-

vidual firefighter. It also recommends the quickest and

Figure 4. Re-usable assets included in the firefighter DT.

Talasila et al. 293



safest exit route based on the current location of the fire-

fighter and building layout. DTaaS user in this scenario is

a firefighter sub-contractor or mission controller, who

deploys and adapts the system before firefighting missions

take place.

Figure 4 provides an overview of re-usable DT assets

used in the firefighter DT. The data used in this DT are

provided by a mock PT (mock firefighter). Simulated

SCBA pressure data and location data from inside of the

building are sent to a MQTT broker to be ultimately used

by the DT. The communication between PT and DT is

based entirely on MQTT topics. Thus the DT case study

outlined in this paper works for a real firefighter PT as

long as the location and oxygen level data are sent to the

DT. It then produces a prediction on mission time and

raises an alarm if the oxygen level is deemed too low.

The remaining mission time is also stored in InfluxDB—

a time-series database. The InfluxDB acts as data stor-

age. Real-time data visualization using InfluxDB and

Grafana dashboards displays crucial information such as

oxygen levels and remaining mission time for the usage

by the mission controller.

The 3D-building data specified as an Industry

Foundation Classes (IFC)-file serve the role of model to

the DT. Three tools are included in this DT.

� Building Data Transformation (IFC2Graph), a tool

that transforms building data from the IFC-file into

a graph structure for navigation purposes. This tool

is essential for creating an accurate and navigable

representation of the building within the DT.
� Route Determination (Graph2Path) determines the

shortest path using the graph derived from building

data. This tool plays a key role in the continuous

route planning of the system.
� Monitor is a runtime monitor for maintaining the

safety of a firefighter. This monitor sends an alert

if there is insufficient oxygen for the firefighter to

safely exit a firefighting situation.

In certain cases, the models are integrated tightly into the

tools and are published as one re-usable asset. Such inte-

grations can be considered as model-tool pairs. There are

two tools with integrated human physiological models in

the firefighter DT. They are:

� Air Consumption Calculation (Path2Time) is a tool

that uses the shortest path information to calculate

the amount of air consumed during navigation. This

tool is vital for approximating the rate of oxygen

depletion and managing the firefighters’ air supply.
� Pressure to Time (Pressure2Time) uses the pressure

sensor values to approximate the amount of time

the air in the SCBA’s air cylinder will last.

Every asset in this list is reused for serving multiple fire-

fighters with one DT for each firefighter. Multiple firefigh-

ters DTs can coexist at the same time on the platform, and

their collected data can be shown in the same dashboard.

5. DT definition

Having defined the DT asset, we now turn to their compo-

sition into DTs. Indeed, for our purpose, a DT is mainly a

(constrained) set of assets, called a DT configuration, con-

nected to a physical system—the PT—using some

services.

First, we investigate the constraints in the relation

between assets to have a valid DT configuration. There is

a dependency between the assets especially in the context

of creating DTs (Figure 5): Only functions/tools can use

models/data. A specific combination of these assets consti-

tute a DT. We distinguish between the DT design (a set of

assets) and its DT configuration.

Figure 5. A conceptual relationship between DTassets (Data, Model, Function, Tool) and DT configuration.
Source: Talasila et al.64

294 Simulation: Transactions of the Society for Modeling and Simulation International 101(3)



5.1. DT design

A DT design Dt describes the possible sets of assets that a

concrete DT instance can have. Here, P �ð Þ denotes the

power set and P. �ð Þ=P �ð Þ n f;g. The possibilities of

asset combinations used in a DT are expressed below

(Definition 1), where a DT design Dt is a tuple of the pos-

sible data assets (denoted D), model assets (denoted M),

function assets (denoted F), and tool assets (denoted T ).

Dt 2 P Dð Þ3P Mð Þ3P Fð Þ3P. Tð Þ ð1Þ

We demand that a DT design has at least one tool.

5.2. DT configuration

The interconnections between assets, parameters (config-

urable runtime variables) of the assets need to be specified

for each DT. This information becomes a part of the DT

asset configuration (Ca). The information encoded in Ca is

not sufficient to truly manifest a closed-loop communica-

tion between a DT and a PT. Thus, each DT requires a

complete configuration (Cdt) that is sufficient to execute a

DT in the presence of supporting services and execution

environment.

The Cpt denotes configuration information required by

a DT to communicate with a PT. Each DT may have con-

straints on the kind of execution environments it is capable

of using, that is tools that can only run either on a specific

operating system or on a server with specific hardware

capabilities. The Ci denotes the infrastructure configura-

tion required by a DT. The Ce denotes configuration for

integration of a DT with external software systems and

services, for example third-party visual dashboards.

Cdt 2 Ca 3 Ci 3 Ce 3 Cpt ð2Þ

Among all the configurations shown in Definition 2, Ca

and Cpt are very specific to one DT design Dt. Thus, gen-

eralization of these two configurations into a configuration

specification standard is a challenging task. The other two

configurations—Ci and Ce—are more general and a con-

figuration specification standard for these two is a man-

ageable challenge. A sanity check is required on validity

of any given Cdt.

We denote an instance that stems from a design Dt con-

figured with a configuration Cdt with DtCdt.

Three situations demand adjustments to Cdt. First is a

user-driven change in Ca, Cpt, Ci, Ce, or Cdt of included

DTs. In this case, a validity check is required before a

transition to new a configuration can be made. Second is a

requirement to perform what-if analysis. What-if analysis

requires minor variations on Cdt to plan and optimize

future steps to be undertaken either on a PT or a DT.

Actual implementation of what-if analysis can be resource

intensive with the resource requirements scaling up in pro-

portion to algorithmic bounds on the (sub)-systems being

used by a DT. Third is the reuse of a DT by one or more

users. Reuse at minimum requires reconfiguration of cre-

dentials to external services. In addition, users might want

to change parameters in Ca before using a DT.

A DT can also use external tools such as planning and

optimisation. This is especially true in what-if analysis. If

these tools are used exclusively within a DT, then, they

can be considered as tools in the asset library. Otherwise,

they are part of the infrastructure/external world.

5.3. Case studies

A mapping of Cdt to the incubator and firefighter case

studies is shown in Table 1. There are many models suit-

able for use in incubator DT, and some of these are para-

meterised models. The model selection and their

configuration is expressed in Ca. The models and tools

used for firefighter are expressed in Ca. Both these case

studies run inside docker containers. Each of them use

platform services for communication with real/mock PTs.

The incubator uses RabbitMQ for PT-DT bidirectional

communication. Both the case studies use InfluxDB for

storing the PT data and analysis results. In addition, the

firefighter case study uses MQTT for data transmission

from PT to DT and Grafana for visualization.

6. Phases in DT life cycle

A DT is a not a static structure—it transitions through a

life cycle with different phases, and we consider it to be

one of the main tasks of a DT platform to manage DTs in

Table 1. DT configuration for the incubator and firefighter case studies.

Configuration for Case Studies

Incubator Firefighter

Assets (Ca) Asset selection; configuration for models, ex: four-parameter model Asset selection
Infrastructure (Ci) Docker Docker
Services (Ce) RabbitMQ, InfluxDB MQTT, InfluxDB, Grafana
Physical Twin (Cpt) Plant controller parameters Not Applicable

Talasila et al. 295



all these phases, as well as the transitions between these

phases.

Two pioneering standards for DTs, namely, the ISO

23247:2021 Standard65 (DT framework for manufactur-

ing) and the IEC 63278-1:2023 Standard42 (AAS for indus-

trial applications which is based on the RAMI 4.0 model),

use life cycle as a general principle for defining DTs. The

former motivates the DT life cycle from the definition of

product life cycle. However, such a definition states that

DTs are more useful if the DTs in effect can be shared

across the product life cycle, including design, planning,

production, maintenance, and support. Similarly, the IEC

63278 standard motivates DT life cycle based on the life

cycle of the physical asset that the digital representation is

featuring, which can be done in a product or process.

Digital twinning a product or a process require different

(yet similar) life cycle phases, such as design, manufactur-

ing, usage/maintenance, and end of life treatment for prod-

ucts, and design, implementation, operation/maintenance,

and decommission for process. The life cycle phases so far

are for DTs themselves. There is a need to translate these

product life cycle phases onto DT platforms without the

loss of conceptual and practical nuances. The rest of this

section describes DT life cycle phases on DT platforms.

The mapping of these phases to product life cycle phases

is explained at the end of the section.

A DT life cycle on DT platforms consists of the create,

execute, analyze, evolve, save, and terminate phases. The

platform allows a user either to create a new DT or select

an existing DT to engage with it in any of its phases. Thus,

reuse is possible by reusing assets that existed before the

DT is created, or reusing assets from prior runs and phases

of the same DT. We next describe the phases on a concep-

tual level, and describe the used techniques in the case

studies to illustrate them.

6.1. Create and execute phases

The create phase involves asset selection and specifying

DT configuration. There is no creation phase at the time of

DT reuse. The execute phase involves an automated execu-

tion of a DT based on its configuration.

6.2. Analyze and evolve phases

The analyze and evolve phases are concerned with moni-

toring and potential reconfiguration of a DT. Monitoring,

at its most basic level, requires data gathering and storage,

of the interaction between the PT and its environment, and

among the PT’s assets. However, even for a simple system,

such as the incubator,66 monitoring requires that hidden

quantities (that is, quantities for which we cannot obtain a

sensor measurement directly) be estimated. This activity

corresponds to analyze life cycle phase. Often these hidden

quantities are represented by variables in various models

used by the DT. The consequence is that estimates of these

hidden quantities need to be stored in database, becoming

then input to decision-making simulations, where all vari-

ables of the models need to be properly initialized. For

more details, we refer the reader prior work.51

Monitoring also informs the next life cycle stage of DT:

the evolve stage. The evolve phase involves user/event-

triggered reconfiguration of an instantiated DT. Note that

the monitoring and planning steps make use of the other

DT services.

6.3. Reconfiguration and consistency

The evolve phase requires reconfiguration of DTs. The

aim of reconfiguration is to ensure consistency between

DT and its PT, that is, the adequacy of the DT to mirror

its PT, access its data, and enable the required analyses.

Reconfiguration may be triggered by different kinds of

events, three of which we discussed above, they are spe-

cific to the system and, thus, reconfiguration procedures

must be provided by the user. These procedures are highly

application specific. The reconfiguration procedures must

be able to access the current DT configuration and its

assets. As the configuration is highly heterogeneous, the

platform should offer a way for uniform access to it, that

is, a representation mapping m that is defined on Cdt and

all its assets as well as provide an interface for the user to

program re-configurations in terms of the uniform access,

that is, define transitions m Cl
dt

� �
!mm Cl+ 1

dt

� �
: Knowledge

graphs are a suitable technology to implement such map-

pings. The approaches to express consistency between DT

and PT in terms of queries on knowledge graphs have

been shown to be useful.67

6.4. Save and terminate phases

The save phase involves saving the state of DT to enable

future recovery. If a DT is reused, there will be a temporal

gap between creation and execution times of a DT. Thus, a

need might arise for just-in-time (JIT) DT reconfiguration

at the point of execution.

The terminate phase involves stopping the execution of

the DT and releasing all the resources and connections

mentioned in the DT configuration. It is also responsible

for cleanup and correct shutdown of the PT (via its com-

ponents), for example, for hardware-in-the-loop testing.

The create life cycle phase of DTaaS corresponds to

creation of first prototype DT perhaps during the design

phase. This create phase also corresponds to preparation of

DT platform environment for DT execution. This DT will

have to be executed to glean insights; such DT execution

corresponds to execute life cycle phase via dedicated life

cycle script/program. Depending on the results of execute

life cycle phase, transition to other phases can happen. The

save life cycle phase can be used to save DTs for reuse,

296 Simulation: Transactions of the Society for Modeling and Simulation International 101(3)



that is future execution. The analyze and evolve phases

together can help with DT management during the com-

plete PT product life cycle. The terminate phase corre-

sponds to termination of execution for a DT. This phase is

specific to DT platforms and does not correspond to any

PT life cycle phase.

6.5. Incubator

Figure 6 contains a mapping of different activities done for

the incubator DT and the conceptual description of DT life

cycle phases.

In the create phase, state estimation and anomaly detec-

tion are combined into a single model. Data input from the

physical incubator is processed, and the output is sent back

to the incubator. Visualization functions are handled using

InfluxDB queries.

During the execute phase, the DT runs, detecting and

addressing anomalies, such as when the incubator lid is

opened.

Transitioning to the save phase, the DT is paused. No

new temperature measurements are recorded or predicted,

but the PT continues to function independently of the DT.

In the analyze phase, users require an estimate of tem-

peh density. A model correlating tempeh density with tem-

perature is created, along with a new state estimator and

visualization for the new data.

In the evolve phase, new state estimation and visualiza-

tion services are deployed, replacing the previous versions.

Finally, in the terminate phase, communication with the

physical incubator ceases, the connection to InfluxDB is

terminated, and the incubator DT process is concluded.

6.6. Firefighter

DTaaS platform’s management of firefighter DT is facili-

tated through a series of life cycle phases, detailed in the

overview graphic in Figure 7.

The DT assets are configured in create phase to create

firefighter DT and to prepare the execution environment.

Figure 6. Mapping of the DT life cycle phases to the incubator use case.66 The ODE acronym stands for ordinary differential
equation.

Figure 7. Mapping of the DT life cycle phases to the firefighter use case.55

Talasila et al. 297



The TeSSLa is configured, links between PT and DT are

created using MQTT, InfluxDB, and Grafana dashboard is

setup. Execute phase activates mock PT and DT. DT now

employs MQTT for data transmission, InfluxDB for stor-

ing data, Grafana for displaying real-time information.

Save and analyze phases are run concurrently to execute

phase. The system’s design ensures that the most recent

data from mock PT is always available, with historical

data primarily used for human decision-making. In analyze

phase, the TeSSLa monitor continuously checks for oxy-

gen levels and sends an alert when the level is too low. In

essence, the possibilities for firefighters to escape are con-

tinuously analyzed using monitor. The results are streamed

in real-time to Grafana dashboard. This concurrent activa-

tion of execution, save, and analysis phases makes DT

responsive and effective. The process concludes with ter-

minate phase in which all the executing DT assets are ter-

minated, connections to MQTT, InfluxDB, and Grafana

are closed, ensuring an orderly shutdown of DT operation.

Through these life cycle phases, DTaaS manages the

complex operations involved in the firefighting scenario,

ensuring efficient data handling and real-time analysis for

decision-making.

7. System architecture

Having established the notions of DT assets, DT config-

uration, and DT life cycle phases, we now examine the

requirements for a platform that uses these concepts to

manage DTs, as well as describe the microservice-based

software architecture underlying DTaaS that realizes these

requirements.

7.1. Requirements

The HUBCAP project68 promoted the collaborative

model-based engineering. One of the outcomes of the proj-

ect is a collaborative sandbox platform in which the provi-

ders of the model authoring tools save their tools pre-

packaged in VMs. The models are published as either pub-

lic or private packages inside their workspaces. The users

of tools instantiate VMs and work with their models. This

experience has brought forth the need to support on-

platform creation of DT assets. With the advances in vir-

tualisation, it is now possible to support software tools

inside containerised environments (Docker, Kubernetes

etc.). In addition, there are cases where the generation of

DT assets can be done impromptu. For instance, the safety

monitoring use cases use runtime monitors like NuRV69

which can generate the required model(s) for JIT execu-

tion of DTs.

The large-scale collaboration among partners creating

DTs requires the ability to share re-usable assets and then

help users discover the availability of existing assets. For

example, the co-simulation-based DTs reuse Maestro tool.

In addition, there is also significant reuse of functional

mockup units (FMUs). Some of these FMUs are confiden-

tial. So there is a need to facilitate both the private and

common spaces for DT assets. The DIGITbrain project22

promoted the use of structured metadata for facilitating

the discoverability of DT assets. It is important to note that

the consolidation here refers more toward discoverability

and less toward centralisation. As long as the assets are

discoverable and integrable into DTs at execution time,

their storage location is irrelevant. Such a decentralized

storage of DT assets respects commercial advantages of

asset owners and is not an impediment to DT execution.70

The value of DTs is realized at execution time. This

execution can either be manual or automated. It can also

happen in centralized or distributed fashion. All these are

possibilities DTs may take advantage of. For instance,

incubator DT can be executed by users in their work-

spaces, or it can be executed as an automated service. It is

also possible to package incubator DT into Helm Chart

and execute the same on a Kubernetes cluster. Thus DT

platforms need to support diverse execution environments

for DTs.

The previous sections explain the advantage of re-

usable DT assets and creation of DT from these assets

using configuration. Thus support for configuration and

reconfiguration is a vital feature on any DT platform.

Some widely used DT platforms like Azure DT, Eclipse

Ditto promote configurability as a means of managing

DTs.

Monitoring and predictive maintenance are two promi-

nent use cases for DTs. Monitoring of civil infrastructure

such as bridges and power infrastructure such as wind tur-

bine farms require DTs which are either 24 3 7 available

or executable on-demand (CP-SENS project)71. For

instance, a safety monitoring team might perform audit on

the wind turbine farm and schedule the next audit after

12 months. If it is not desirable for the DT (as relevant to

the audit scenario) to be run in the interim it is advanta-

geous to save and re-instantiate the DT at the time of next

audit. One of the key activities of a safety audit is to per-

form what-if scenario analysis to gauge the safety of the

wind turbine farm under alternative weather conditions.

The DT platforms must facilitate such a use case. One of

the exemplar case studies developed on DTaaS is a fault

injection based co-simulation. In this use case, faults are

provided as DT configuration for a what-if scenario

analysis.

Finally, users do have either direct or indirect interac-

tion with DTs. The direct interaction needs to be facilitated

via DT platform while the indirect interaction happens via

services running on top of DTs. For example, the incubator

DT integrates with InfluxDB on which pre-configured

dashboards are loaded. The users can interact with these

dashboards instead of directly interacting with incubator

DT.

298 Simulation: Transactions of the Society for Modeling and Simulation International 101(3)



Summarized, the discussed user requirements are:

Requirement-1: Author—create different assets of the

DT on the platform itself. This step requires use of

tools whose sole purpose is to author DT assets.

Requirement-2: Consolidate—consolidate the list of

available DT assets and authoring tools so that user can

navigate the library of re-usable assets. This functional-

ity requires support for discovery of available assets.

Requirement-3: Configure—support selection and

configuration of DTs. This functionality also requires

support for validation of a given configuration.

Requirement-4: Execute—provision computing infra-

structure on demand to support execution of DT.

Requirement-5: Explore—interact with DT and

explore the results stored both inside and outside the

platform. Exploration may lead to analytical insights.

Requirement-6: Save—save the state of DT that is

already in the execution phase. This functionality is

required for on-demand saving and re-spawning of

DTs.

Requirement-7: What-if analysis—explore alternative

scenarios to (1) plan for an optimal next step, (2) re-

calibrate new DT assets, (3) automated creation of new

DTs or their assets; these newly created DT assets may

be used to perform scientifically valid experiments.

Requirement-8: Collaborate—share DT assets with

other users of their organization. If DTs are to be confi-

dential, services built on DTs can be shared.

7.2. System components

Despite diverse requirements for different users, DTaaS

presents a unified interface to the users. This unification is

achieved by providing a gateway to consolidate the func-

tionality provided by internal system components. Figure 8

shows the C4 system architecture72 of DTaaS software

platform. Users interact with the software via a web appli-

cation. The gateway is a single point of entry for direct

access to the platform services and is responsible for con-

trolling user access to the containers. Each container con-

tains a set of microservices. The term microservices shall

be used henceforth to explain the system functionality

implemented in C4 containers. The swapping of terms is to

align with the architectural description of DT platforms in

the existing literature.73 The microservices are comple-

mentary and composable; they fulfill core requirements of

the system. There are microservices for catering to store,

Figure 8. The software architecture of DTaaS platform. It is based on microservices architecture.

Talasila et al. 299



explore, configure, execute, and scenario analysis require-

ments. Dedicated user workspaces enable authoring of DT

assets. The microservices are packaged and deployed on

Kubernetes cluster to take advantage of virtualisation, scal-

ability, and service discovery.

7.3. Microservices

The microservices illustrated in Figure 8 provide the bulk

of the platform functionality. The security microservice

implements role-based access control (RBAC) in the plat-

form. The accounting microservice is responsible for

keeping track of the platform, DT asset, and infrastructure

usage. Any licensing, usage restrictions need to be

enforced by the accounting microservice. Accounting is a

pre-requisite to commercialisation of the platform. Owing

to significant use of external infrastructure and resources

via the platform, the accounting microservice needs to

interface with accounting systems of the external services.

The data microservice is a front-end to all the databases

integrated into the platform. A time-series database and a

graph database are essential, from multiple reported cases

in the state of the art.1 These two databases store time-

series data from PT, events on PT/DT, commands sent by

DT to PT. It is possible to integrate dedicated Internet of

Things (IoT) frameworks such as Eclipse Hono37 into the

data microservices. The PTs uses these databases even

when their respective DTs are not in the execute phase.

The visualization microservice is again a front-end to

visualization software that are supported inside the plat-

form. Any visualization software running either on exter-

nal systems or on client browsers do not need to interact

with this microservice. They can directly use the data pro-

vided by the data microservice.

DTaaS is a collaborative platform. Users are able to

have private and shared storage space to enable controlled

sharing of either DT assets or DTs. The re-usable assets

microservice (Asset MS) provides search, explore, and

select functions over DT assets. Thus Asset MS should aid

users in performing create-read-update-delete operations

on the private and shared re-usable assets. Any ready to

use DTs are also made available via the Asset MS.

The DT life cycle microservice assists users during all

life phases of a DT. This microservice extensively uses other

microservices to provide atomic operations at the level of

DTs. This microservice acts as a controller to both the Asset

MS and execution manager microservice (Exec MS).

The Exec MS is responsible for on-demand provision-

ing of virtual compute infrastructure. To make the plat-

form scalable, the Exec MS must be capable of integrating

with private and public cloud providers. Users operate

with these isolated workspaces. The Exec MS receives DT

configuration from DT life cycle MS and executes DT in

isolated compute environment (ex: containers, VMs etc.).

The Exec MS must interpret DT configuration specified in

Definition 2. The required compute environment shall be

provisioned as specified in Ci. The Ce and Cpt are connec-

tions to external software and PT respectively. These con-

nections are to be managed as network access control

policies. Finally, Ca helps with gathering of required DT

assets. The data assets managed by Asset MS are linked to

the DT using access credentials provided in Ca. The Exec

MS also downloads the required model, function, and tool

assets and then places them in the compute environment.

If all the above steps are successful, DT becomes available

for use. The DT life cycle MS takes over the management

of all the DTs provisioned by Exec MS and takes them

through life cycle phases as per the events triggered on the

respective DTs. The Exec MS comes back into reckoning

during the termination life cycle phase of a DT.

8. Platform implementation

The current implementation of DTaaS supports re-usable

assets, DT life cycle, user workspaces and providing DTs

as a service within the platform. Figure 9 shows the func-

tioning system components providing the features men-

tioned here. There have been five releases of software so

far and it is actively used by researchers and engineers

from software engineering, electrical, civil, mechanical,

and robotics domains. The entire DTaaS platform is avail-

able as two containerised packages. One is for the core

platform and another is for the platform services. Users

only need configure the OAuth, asset location, and net-

work host/port information and the application becomes

installable. There is also an DTaaS CLI python package75

to perform user management of the platform.

The current security functionality is based on mutual

Transport Layer Security (mTLS) and OAuth2 protocols.

Users receive signed TLS certificates. The TLS certificate-

based mutual TLS (mTLS) authentication and OAuth2

provides better security than the usual username and pass-

word combination. The mTLS authentication takes place

between the users browser and the platform gateway. The

gateway federates all the back-end services. The service

discovery, load balancing, and health checks are carried by

the service based on a dynamic reconfiguration mechan-

ism. The OAuth2 integration is active for both the website

and other services accessed via the service router.

Each DTaaS software installation comes with support

for multiple platform services. These services are available

to all users, DTs running inside the platform and the PTs

linked to the DTs running within the platform. The DTs

and PTs access the platform services using the standard

network (TCP/IP) protocols. Thus any services supporting

these protocols can be integrated with DTaaS. Five ser-

vices have been integrated with the platform so far primar-

ily to support the case studies already implemented on the

300 Simulation: Transactions of the Society for Modeling and Simulation International 101(3)



platform. The integrated services provide communication,

data storage, monitor, and visualization functionalities.

InfluxDB76 time-series database and MongoDB77 docu-

ment database are also integrated into the platform.

InfluxDB comes with data storage, and querying and

visualization dashboards. The incubator case study uses

this platform service for data storage and visualization.

Users are permitted to share the dashboards. Thus DT

experts can develop custom dashboards and share them

with other users. MongoDB77 Java Script Object Notation

(JSON) document database is also part of DTaaS. If DTs

or users wish to operate using data or asset configuration

expressed in JSON, there is support for such usage.

There is support for AMQP,78 MQTT,79 and OPC-

UA80 protocol-based communication between PT and DT.

These communication-related platform services can be

used for bidirectional transfer of data and control com-

mands between DT-PT pairs. Thirteen exemplar case stud-

ies have been made available publicly to showcase this

support81 out of which seven case studies have been sum-

marized in this paper.

The Grafana82 has been integrated as another platform

service. This service is a de facto industry software to

monitor, visualize, observe, and trace distributed systems.

Given the need to support PTs deployed across multiple

physical locations, software like Grafana is a good choice

for monitoring and visualization. These services can be

provided with data from PT in which case there is only PT

monitoring and visualization. Digital Shadows provide

one way communication from PT to DT. Even in this case,

the Grafana and other platform services can be used to

provide monitoring and visualization services. This same

observation is valid even for DTs. A development version

of the firefighter case study uses Grafana dashboard for

monitoring and visualization purposes.

A re-usable assets microservice has been developed to

provide access to re-usable DT assets to the platform users.

This microservice uses GraphQL protocol for asset

Figure 9. The current implementation of DTaaS platform. It supports composable DTs and provides integrated user workspaces.
Re-usable assets microservice performs create, read, update and delete (CRUD) operations on DTassets.
Source: Larsen et al.74

Talasila et al. 301



discovery and HTTP protocol for file transfer. The users

can store both private DT assets and also get access to

shared DT assets. Users can synchronize their private DT

assets with external Git repositories. In addition, asset

repository transparently gets mapped to user workspaces

within which users can perform DT life cycle operations.

Many DTs do not provide API interfaces. Such a lim-

itation reduces the integration possibilities of DTs with

other DTs, platform services, and external software sys-

tems. In order to improve the integration possibilities, a

runner microservice has been developed to create REST

API wrappers around DTs. This microservice converts

REST API calls to invoke life cycle scripts or any other

scripts that can support direct operations on DTs. A user

can create many DTs with or without runner integration.

DTs with runner integration will be available as service to

other users of DTaaS. Thus users have the flexibility to

hide proprietary/private DTs and only provide access to

them as services to other users. This feature gives rise to

the possibility of creating collaborative DTs that are man-

aged by multiple users.

A YAML Ain’t Markup Language (YAML)83-based

configuration format is been defined to specify the DT

configuration explained in DT Definition section. This

configuration format will be used in future by the DT Exec

MS. The users can fill the configuration template from

their workspace or via web services exposed via the single

page application.

All users have dedicated workspaces. The workspaces

are implemented as docker containers running desktop

Linux environment. These come with isolated docker con-

tainers having streaming desktop, VSCode, Jupyter note-

books, and remote terminal access.

A relational view of user workspace is provided in

Figure 10. Each user workspace is private and is securely

available via unified interface integrated into the single

page web application. Users have access to re-usable DT

assets. Users can install asset management tools of their

own in the private workspace and use them to manage

their DT assets. Users can also update the configuration of

a DT and run life cycle scripts.

Users can run DTs within their workspace and make

them accessible to other users. Any DT capable of provid-

ing services can be accessed by other users as services,

thereby making DTs available as services.

Users can also permit remote access to live DTs via

platform services. If a DT does not have an API interface,

runner can be used to provide one which makes the DT

becomes available as a service within and outside of user

workspace. Using the service API interfaces of DTs with

or without runner, users can treat live DTs as service com-

ponents in their own software systems.

In addition, these workspaces have Internet access.

Thus, the PT to DT bidirectional communication link is as

simple as spawning required client-server communication

protocol software. In addition, the platform services can

always be used for bidirectional PT-DT communication. It

is possible to restrict the DT-PT and DT-Internet commu-

nication. A suitable network firewall configuration can

easily enforce the necessary restrictions. If users are well-

versed in the software management processes, DevOps-

related techniques can be used from within the

workspaces.

8.1. Model management

It is important for DTs and DT platforms to support a

combination of models produced using different mathe-

matical paradigms.85 DTs are heterogeneous of nature and

thus when DTs are established for CPSs this support is

paramount. In order to accommodate such integration, we

make use of the FMI86 standard but naturally there are

other alternatives as well. The DTaaS already supports

such diverse modeling paradigms. This support is made

possible in four ways.

First is the availability of user workspaces in which

models can be created and managed. Users are at liberty to

use programming languages, engineering tools, and frame-

works of their choice for model creation and management.

The model generation tools such as Modelica, Gmsh87 and

Matlab can be installed and used for creation of models.

Such tools can also help with the simulation of DTs in

which these models are included. Thus models of different

formats and representations are already supported inside

the DTaaS. The exemplar case studies presented in Table

3 already have finite-element method (FEM), physics,

ODE-based models published in FMUs, Modelica, and

Python package representations. Other commercial part-

ners have demonstrated proprietary System of Systems

and FEM models as Matlab and Geo (by the Gmsh tool)

Figure 10. A relational view of the user workspace. The
system components are all linked to the workspace and the DTs
run inside the workspace. The DTs are also offered as services
to internal and external users.
Source: Jensen et al.84

302 Simulation: Transactions of the Society for Modeling and Simulation International 101(3)



T
a
b
le

2
.
Su
m
m
ar
y
o
f
co
m
p
ar
is
o
n
o
f
ex
is
ti
n
g
p
la
tf
o
rm

s.
T
h
e
q
u
al
it
at
iv
e
cr
it
er
io
n
h
as

b
ee
n
ad
o
p
te
d
fr
o
m

p
ri
o
r
w
o
rk
.5
,1
6
,4
5

C
ri
te
ri
o
n

St
ru
ct
u
re
d
D
T

La
n
gu
ag
e
sp
ec
ifi
ca
ti
o
n

C
o
-s
im
u
la
ti
o
n

D
Ta
aS

ap
p
ro
ac
h

E
cl
ip
se

B
aS
yX

(A
A
S)

E
cl
ip
se

D
it
to

D
T
D
L

E
cl
ip
se

V
o
rt
o

IN
T
O
-C

P
S
C
o
-

si
m
u
la
ti
o
n
fr
am

ew
o
rk

D
es
cr
ip
ti
o
n
o
f
D
T
s

an
d
st
ru
ct
u
re
s

B
y
A
A
S

Su
b-

m
od

el
s,

m
ai
n
ly
d
ef
in
ed

b
y

Pr
op

er
tie

s
an
d

O
pe

ra
tio

ns

B
y
JS
O
N

st
ru
ct
u
re
s,

d
ef
in
ed

b
y

A
tt
ri
bu

te
s,

Fe
at

ur
es
,
an
d

D
ef

in
iti

on
s

B
y
D
T
D
L-
b
as
ed

JS
O
N

st
ru
ct
u
re
s,
d
ef
in
ed

b
y

C
om

m
an

ds
,

C
om

po
ne

nt
s,

Pr
op

er
tie

s,
R
el

at
io

ns
hi

ps
,
an
d

Te
le

m
et

ri
es

B
y
V
o
rt
o

In
fo

rm
at

io
n

M
od

el
s,
co
m
p
o
se
d
o
f

o
b
je
ct
-o
ri
en
te
d

Fu
nc

tio
n

B
lo

ck
s,

in
cl
u
d
in
g

Pr
op

er
tie

s,
E
ve

nt
s,
an
d

O
pe

ra
tio

ns

B
y
th
e
M
ae
st
ro

M
u
lt
i-

m
o
d
el
co
n
fig
u
ra
ti
o
n

fil
e,
m
ai
n
ly
d
ef
in
ed

b
y

FM
U

s,
C
on

ne
ct

io
ns
,
an
d

Pa
ra

m
et

er
s

B
y
th
e
D
T

co
n
fig
u
ra
ti
o
n
,
d
ef
in
ed

b
y

A
ss

et
s—

w
h
ic
h
ca
n

co
n
ta
in

D
at

a,
M

od
el

s,
Fu

nc
tio

ns
,T

oo
ls
an
d

D
ig
it
a
l
T
w
in
s—

In
fr

as
tr

uc
tu

re
,P

hy
si
ca

l
Tw

in
s,
an
d

Se
rv

ic
es

C
o
m
p
o
si
ti
o
n

B
y
ag
gr
eg
at
io
n
o
f
Su

b-
m

od
el

s
B
y
ag
gr
eg
at
io
n
o
f

Fe
at

ur
es

B
y
co
m
p
o
si
n
g

In
te

rf
ac

es
vi
a

C
om

po
ne

nt
s
-a
n
d

co
m
p
o
si
ti
o
n
vi
a

R
el

at
io

ns
hi

ps
-

B
y
ag
gr
eg
at
io
n
o
f

Fu
nc

tio
n

B
lo

ck
s

B
y
ag
gr
eg
at
io
n
o
f

h
ie
ra
rc
h
ic
al
FM

U
si
m
u
la
to
rs

B
y
ag
gr
eg
at
io
n
o
f

A
ss

et
s

D
T-
D
T
re
la
ti
o
n
sh
ip
s

Im
p
lic
it
ly
b
y
se
m
an
ti
c

id
en
ti
fie
rs

vi
a

R
ef

er
en

ce
s

N
.A
.

E
x
p
lic
it
ly
b
y
th
e

R
el

at
io

ns
hi

ps
fie
ld

Im
p
lic
it
ly
b
y

M
od

el
R
ef

er
en

ce
s

N
.A
.

O
n
ly
ap
p
lic
ab
le
fo
r
D
T

co
m
p
o
si
ti
o
n

D
ef
au
lt
b
id
ir
ec
ti
o
n
al

sy
n
ch
ro
n
iz
at
io
n

A
s
a
D
T

A
s
a
D
T

A
s
a
D
ig
it
al
M
o
d
el

(r
eq
u
ir
es

a
b
ac
k-
en
d

to
se
t
u
p
a
D
T
vi
a

Te
le

m
et

ri
es

an
d

C
om

m
an

ds
)

A
s
a
D
ig
it
al
M
o
d
el

(r
eq
u
ir
es

a
b
ac
k-
en
d

to
se
t
u
p
a
D
T
vi
a

Pr
op

er
tie

s,
O

pe
ra

tio
ns
,

an
d

E
ve

nt
s)

A
s
a
D
ig
it
al
M
o
d
el

(r
eq
u
ir
es

R
ab
b
it
M
Q

FM
U
8
9
to

se
t
u
p
a
D
T
)

A
s
a
D
T

R
u
n
n
in
g
si
m
u
la
to
rs

N
o

N
o

N
o

N
o

Ye
s
(v
ia
FM

U
s
an
d

M
ae
st
ro
)

Ye
s
(m

u
lt
ip
le

si
m
u
la
to
rs

in
cl
u
d
ed

as
re
-u
sa
b
le
to
o
ls
)

B
in
d
in
g
to

in
fr
as
tr
u
ct
u
re

se
rv
ic
es

P
ro
vi
d
es

A
P
Is
to

su
p
p
o
rt

O
P
C
U
A
,

M
o
n
go
D
B
,

Po
st
gr
eS
Q
L,
D
o
ck
er
,

H
T
T
P
R
E
ST
,

A
u
to
m
at
io
n
M
L,
an
d

IE
C
6
1
3
6
0
p
ro
d
u
ct

d
ic
ti
o
n
ar
ie
s
(e
.g
.

E
C
LA

SS
)

P
ro
vi
d
es

A
P
Is
to

su
p
p
o
rt

A
p
ac
h
e
K
ak
fa
,

M
o
n
go
D
B
,n
gi
n
x
,

H
T
T
P
R
E
ST
,
A
M
Q
P,

M
Q
T
T,
an
d

W
eb
So

ck
et

C
o
m
p
at
ib
le
w
it
h

M
ic
ro
so
ft
A
zu
re

D
T
s

C
o
m
p
at
ib
le
w
it
h

E
cl
ip
se

D
it
to

an
d

E
cl
ip
se

H
o
n
o

D
ep
en
d
en
t
o
n

se
rv
ic
es

w
ra
p
p
ed

as
FM

U
s
o
r
ac
ce
ss
ib
le
vi
a

th
e
FM

I
in
te
rf
ac
e

P
ro
vi
d
es

a
se
t
o
f

in
fr
as
tr
u
ct
u
re

se
rv
ic
es

th
at

ar
e
in
it
ia
liz
ed

fr
o
m

th
e

In
fr

as
tr

uc
tu

re
fie
ld

in
th
e
D
T

co
n
fig
u
ra
ti
o
n

B
in
d
in
g
to

D
T

(o
p
ti
m
is
at
io
n
)
se
rv
ic
es

E
x
p
o
se
s
A
P
Is
th
at

ca
n

b
e
u
se
d
b
y
ex
te
rn
al

se
rv
ic
es

E
x
p
o
se
s
A
P
Is
th
at

ca
n

b
e
u
se
d
b
y
ex
te
rn
al

se
rv
ic
es

N
.A
.

N
.A
.

D
ep
en
d
en
t
o
n
p
re
-

d
ef
in
ed

FM
U
s
th
at

in
cl
u
d
e
su
ch

se
rv
ic
es

(n
o
t
n
ec
es
sa
ri
ly

ge
n
er
al
is
ab
le
to

m
u
lt
ip
le
ca
se

st
u
d
ie
s)

C
an

b
e
d
o
n
e
th
ro
u
gh

(1
)
in
te
rn
al
o
r

ex
te
rn
al
in
fr
as
tr
u
ct
u
re

se
rv
ic
es

an
d
(2
)
a

co
m
b
in
at
io
n
o
f

Fu
nc

tio
ns

an
d

To
ol

s
an
d

th
e
b
u
si
n
es
s
lo
gi
c
in

th
e
co
rr
es
p
o
n
d
in
g
lif
e

cy
cl
e
p
h
as
e

R
e-
u
sa
b
ili
ty

O
f
Su

b-
m

od
el

s
an
d

in
fr
as
tr
u
ct
u
re

O
f
Fe

at
ur

es
an
d

in
fr
as
tr
u
ct
u
re

O
f
C
om

po
ne

nt
s
an
d

In
te

rf
ac

es
O
f
Fu

nc
tio

n
B
lo

ck
s

O
f
FM

U
s

O
f
D

at
a,

M
od

el
s,

Fu
nc

tio
ns

,T
oo

ls
,
an
d

in
fr
as
tr
u
ct
u
re

D
Ta
aS
:
D
ig
it
al
Tw

in
as

a
Se
rv
ic
e
p
la
tf
o
rm

;D
T
D
L:
D
ig
it
al
Tw

in
D
es
cr
ip
ti
o
n
La
n
gu
ag
e;
JS
O
N
:
Ja
va

Sc
ri
p
t
O
b
je
ct

N
o
ta
ti
o
n
;
FM

U
:
fu
n
ct
io
n
al
m
o
ck
u
p
u
n
it
s;
N
A
:
n
o
t
ap
p
lic
ab
le
;
FM

I:
fu
n
ct
io
n
al
m
o
ck
u
p

in
te
rf
ac
e.

Talasila et al. 303



files. These proprietary models could not be described in

this paper due to commercial considerations.

Second is the JIT compilation of models. Sometimes

users create models in one format (say in Modelica format)

and compile them to another format (say FMUs) before the

model is used inside a DT. Model compilation scripts used

in the create DT life cycle phase (explained in Phases in

DT Life Cycle) perform this kind of JIT compilation. The

firefighter case study takes advantage of this technique to

compile a Modelica representation into an FMU.

Third is the ability to use complementary and replace-

able models for a single DT. The Re-usable Digital Twin

Assets details different models in the incubator and the

firefighter case studies. The selection of the available mod-

els for a DT is specified in the DT configuration.

Fourth is the dynamic, runtime integration of models

into DTs. In this case, model integration and/or swapping

happens during the evolve phase of a DT. This runtime

change of DT models is controlled by DT configuration

and data received by the DT at runtime. The Water tank

model swap example (in Table 3) demonstrates dynamic

swapping of FMUs.

While DTaaS allows the technical combination of dif-

ferent kind of models, it is in the responsibility of the DT

creator to assure a semantically meaningful combination.

Simulation granularity, especially notion of time, but also

to the physical units, and so on has to be ensured when

building a DT instance.

8.2. Comparison with existing platforms

Prior work5,16 provides qualitative comparison of DT plat-

forms based on Structured data, Language specification,

Co-simulation, Domain-specific, and Geospatial data DT

frameworks and platforms. In order to objectively assess

DTaaS proposed in this work, we take similar criteria to

compare DTaaS with some existing frameworks and plat-

forms that are used to realize DTs in the categories of

Structured data, Language specification, and Co-simula-

tion. The other two categories, namely, Domain-specific,

and Geospatial data, are not considered since they are out

of the scope of DTaaS platform.

Since some of the frameworks presented in previous

surveys5,16 share similar characteristics, for example,

AAS-based implementations (Eclipse BaSyX, SAP I4.0

AAS, NOVAAS, PYI40AAS, and AASX Package

Explorer), IoT-based implementations (Eclipse Ditto,

Azure DTs, and AWS IoT Greengrass), languages (DTDL,

Eclipse Vorto, and Twined), and model-based implemen-

tations (INTO-CPS Co-simulation Framework and CPS-

Twinning), a representative sample is taken with the most

complete framework(s) per group based on the authors’

knowledge and experience with the tools and frameworks.

Thus, the comparison considers Eclipse BaSyX and

Eclipse Ditto in the Structured DT category, DTDL and

Eclipse Vorto in the Language specification category, and

INTO-CPS Co-simulation framework in the Co-simulation

category. We compare the capabilities of DTaaS with the

selected frameworks in a range of features, such as its cap-

abilities regarding configuration files, which is relevant in

frameworks like DTDL,35 Eclipse Vorto,88 and the AAS

schema; its platform capabilities, which is relevant in fra-

meworks like Eclipse BaSyX40 and Eclipse Ditto;38 its

modeling and simulation capabilities, which is relevant in

frameworks like the ones in the Structured DT and Co-

simulation categories; and finally, its capabilities to inte-

grate services both infrastructure- and DT optimisation-

wise in comparison with the three categories mentioned

above. Table 2 provides an overview of the comparison

for the criteria Description of DTs and structures,

Composition, DT-to-DT (DT-DT) relationships, Default

bidirectional synchronization, Running simulators,

Binding to infrastructure services, Binding to DT (optimi-

sation) services, and Re-usability, inspired by the existing

surveys on DT platforms/frameworks.5,16,90

In comparison to the selected platforms, as detailed in

Table 2, DTaaS approach performs well in terms of the

bidirectional communication capabilities, DT description,

re-usability, binding to infrastructure services, and more

importantly, integrating running simulators. Yet, it strug-

gles with incorporating DT-to-DT relationships, especially

for a more semantically accurate way to compose DTs,

and with defining a more straightforward mechanism to

set up and modularly attach DT (optimisation-wise) ser-

vices. In addition, DTaaS supports hosting external third-

party DT frameworks, such as the DT Manager,45 where

such an approach becomes a Tool in DTaaS context. This

way, DTaaS can be used as a hub converging the realiza-

tion of DTs where multiple tools, frameworks, and design

paradigms co-exist.

9. Implementation of case studies

This section demonstrates use of DTaaS for working with

DTs.

9.1. Incubator

The incubator was originally developed independently

from DTaaS platform. This DT is an example of develop-

ing DTs outside of DTaaS and deploying them on it. The

DT itself is re-usable in other DTs but does not have re-

usable DT assets included in it.

Figure 11 shows the implementation of the incubator

DT inside DTaaS. User instantiates an already available

DT in the workspace as per the configuration. The DT con-

nects with PT via RabbitMQ service and publishes time-

series data to InfluxDB. A dashboard has been setup on

InfluxDB to showcase analytical results produced by the

304 Simulation: Transactions of the Society for Modeling and Simulation International 101(3)



DT. Please see prior work91 for more explanation of the

analytical results.

9.2. Firefighter

The firefighter DT case study implementation takes advan-

tage of the DT concepts supported in DTaaS. The firefigh-

ter DT is put together from data, model, function, and tool

assets as described in the Firefighter subsection. The DT

uses MQTT, a lightweight messaging protocol, to handle

data transmission. This broker acts as the central point for

data exchange, ensuring soft real-time, and reliable com-

munication among various system elements without the

need for synchronization. The DT also uses data storage

(InfluxDB) and visualization (Grafana) services integrated

into the platform. Grafana provides a GUI for decision-

making by the mission commander. A TeSSLa monitor is

implemented for real-time monitoring of both the time

needed to leave the building and breathing time left in the

SCBA. It alerts when pre-defined thresholds are reached.

The Telegraf-TeSSLa-connector92 integrates TeSSLa into

the system.

Figure 12 provides an overview of the sequence of

events, facilitating efficient data exchange, and integra-

tion of different components. There are two sequences,

each of which calculates a time. A graph is generated

once in IFC2Graph with the 3D building file, in which

navigation then takes place. The Graph2Path uses the

position of the mock firefighter to calculate the path to

the next exit. This path is used in Path2Time to approxi-

mate the time required to leave the building along a

given path. The reported pressure values of the mock

firefighters SCBA are used in Pressure2Time to approxi-

mate the time for which oxygen is available. These two

times are monitored continuously. If there is a risk of

insufficient oxygen available to leave the building, the

firefighter is warned.

The firefighter DT has been validated through simula-

tions and feedback from firefighter technology providers

involved in the O5G-N-IoT project as well as a few fire-

fighters. These stakeholders have provided valuable

insights into practical requirements and potential improve-

ments for the system.

The firefighter DT is run in user workspace. DTaaS

supports multiple firefighters DTs for each user while still

maintaining the required isolation between all the active

firefighter DTs. A collective monitoring results for differ-

ent firefighter DTs can also be shown as one single visua-

lization dashboard.

9.3. Other exemplar case studies

The existing users of DTaaS have developed multiple

Digital Shadows and DTs to support their case studies.

They have also generously contributed non-proprietary

versions of their case studies as exemplars to other users

of DTaaS.81 Seven of these exemplars are summarized in

Table 3. The exemplars come from diverse applications

domains including Physics, Robotics, Food industry, and

Water systems. The Desktop Robotti is a DT created for

an autonomous agricultural vehicle;93 the Flex-Cell

Robots is a DT for flex-cell workstation.94 The mass

spring damper with runtime monitor demonstrates the use

of NuRV69 as a runtime verification (RV) and monitoring

tool. This RV tool is integrated into the mass spring dam-

per co-simulation DM.95 There is no PT for this DM.

However, this exemplar demonstrates use of two tools,

namely NuRV and Maestro58 for creating a DM. Such use

of multiple models and tools ı́n one DT has been demon-

strated again in other exemplars.

Figure 11. Incubator DT in DTaaS platform.

Figure 12. Sequence diagram of the DT for the rescue mission
scenario.

Talasila et al. 305



The Water tank fault injection96 and model swap97

demonstrate the advantages of runtime fault injections and

dynamic model swapping in DT.

There is a significant reuse of DT assets among the DTs

created in different application domains. For example, the

DT Robotti, Flex-Cell Robots, and Water tank model swap

case studies use Maestro co-simulation engine as a DT tool

asset. There is even reuse of models among the water tank

model swap and water tank fault injection case studies.

The incubator with NuRV runtime monitor service is a DT

of incubator with integrated runtime monitoring service.

This DT is an example of reusing one DT inside another

DT. The Flex-Cell Robots is a pair of robots each of which

have a unique DT which in turn are included in the Flex-

Cell Robots DT. Thus it is possible to use more than one

DT inside one DT and DTaaS supports such use cases as

well.

Quite a few of these exemplars use the platform ser-

vices integrated into DTaaS. The Desktop Robotti, Flex-

Cell Robots, and incubator with NuRV monitor service

use RabbitMQ service. The Flex-Cell Robots also uses

MQTT service. The waste water treatment exemplar uses

OPC-UA communication service. Thus the advantages of

integrated platform services are evident in supporting the

diverse case studies within DTaaS.

The Figure 13 illustrates the potential for re-usability of

assets in DTs constructed using composition technique.

The composition can be applied at either model/tool/ser-

vice-level or at the DT level. There are two instances of a

DT being composed in another DT. Such reuse is com-

pletely supported in DTaaS. Another advantage of this

approach is to tailor the platform usability to the expertise

of users. The expert users can create and manage all re-

usable assets including DTs. Each DT is specified using

one DT configuration stored in YAML format. The users

of DT can create multiple instances of DT by having multi-

ple configurations one for each DT instance. Thus users of

DT need not concern themselves with the internal details

of DT; they can just modify the DT configuration and

instantiate a live DT which can then support the services

built on top of it. These services can either be platform ser-

vices or external services. The non-expert and decision

makers can utilize the analytical results produced by the

Table 3. The implementation of seven more DTexemplar case studies inside DTaaS.

Exemplar Name Application
Domain

Physical Twin—Real/
Mock/Both

Reuse of: Life cycle phases

Desktop Robotti Robotics Both Model, Tool and Service Create, execute, terminate
Flex-Cell Robots Robotics Both Models, Tool and Services Create, prepare (configures all

assets from one DT
configuration), execute, save,
analyze, terminate

Incubator with NuRV
runtime monitor
service

Food Safety Both Models and Services Create, execute, analyze,
terminate

Mass Spring Damper
with runtime monitor

Physics None Models and Tool Create, execute, analyze,
terminate

Water tank fault
injection

Water Mock Models and Tools Create, execute, analyze,
terminate

Water tank model
swap

Water Mock Models and Tool Create, execute, evolve (auto),
analyze, save, terminate

Waste water
treatment

Water Both Functions, Services, Tool Create, execute, terminate

DT: digital twins.

Figure 13. A dependency graph of all re-usable assets included
in the case studies quoted in this paper. The dependency arrow
goes from composing asset to composed asset.

306 Simulation: Transactions of the Society for Modeling and Simulation International 101(3)



services. They do not need to even manage the DT itself;

access to DT-supported services is sufficient.

10. Performance evaluation
10.1. Incubator

Multiple incubator DTs can be run by one user. Multiple

users can run many incubators concurrently. The only lim-

itation is on the capabilities of the underlying hardware to

support the number of live incubators DTs. The incubator

has a sensor that samples temperature values every 3 sec-

onds. Thus the network delays and packet losses below

3 seconds are not observable.

10.2. Firefighter

In our performance evaluation, we conducted two experi-

ments related to the firefighter use case to assess the sys-

tem’s efficiency and robustness.

The first experiment involved comparing the perfor-

mance of platform-hosted and remote MQTT servers. To

compare, the system was configured to use either the inte-

grated MQTT server or remote MQTT server and the com-

munication times to and from a mock PT were measured

with an additional MQTT subscriber. For each experiment

500 measurements were taken. The results are summarized

in Table 4. The findings indicate that the integrated MQTT

service significantly improves the system’s performance

compared to the remote MQTT server.

The second experiment focused on the impact of net-

work stress on DTs running inside DTaaS. The network

stack on the server hosting DTaaS has been kept busy by

iPerf98 throughput testing tool. The TCP client and server

of the throughput test are on the same server. Thus the

effective network bandwidth available to the DTs becomes

reduced. The results are shown in Table 4. Despite the net-

work stress, both the DT and DTaaS continued to perform

as per the requirements, demonstrating its robustness

under adverse conditions. The firefighter DT does not

have safety and reliability system in place yet. We are cur-

rently working on a Fault Detection Identification and

Recovery (FDIR) solution for some properties of the sys-

tem. We intend to monitor the 5G configuration, possibly

with some mesh network between the User Equipment

(mobile devices) and the data rate usage of different data

streams to detect faults, try to identify their causes and

recover from them.

11. Discussion and future work

DTaaS is a platform for building, using, and sharing DTs.

The reuse of DT assets is a guiding principle around which

DTs are managed within DTaaS. This approach has been

illustrated with two detailed case studies, and seven addi-

tional exemplar case studies. Significant progress has been

made in the platform implementation, specifically in

developing the re-usable assets microservice, enhancing

scalability. The existing data, models, and tools have been

shown to be re-usable, facilitating a smooth transition for

users from their local development environments to DTaaS

hosted on the cloud.

In addition, the DT configuration format has been

defined and mapped to the two primary case studies, aid-

ing new users in creating their own DTs and simplifying

the adoption of DTaaS. A performance evaluation on the

firefighter case study showcases DTaaS’s capability to

handle PTs operating both on-premise and remotely, dis-

cusses the impact of network latency and validates the

platform’s ability to execute multiple DTs concurrently.

Five versions of DTaaS software have been released, and

it is being actively used by researchers and commercial

partners.

Ongoing work includes integrating semantic modules

as a DTaaS platform service, enabling the interpretation of

DTs as a knowledge graph for consistency checking and

semantic querying. Future work will focus on extending

the platform’s capabilities, enhancing the semantic mod-

ule, and further validating DTaaS approach through addi-

tional case studies and user feedback.

12. Concluding remarks

There is a strong interest in the DT community to provide

DTaaS to spread the user base of DTs. A typical DT life

cycle on DTaaS involves create, execute, save, analyze,

evolve, and terminate phases. Only software platforms

developed with awareness of DT life cycle can aspire to

fulfill DTaaS vision. Re-usability of DT assets, creation of

meaningful DT configuration, scalable deployment is key

challenges in the development of DTaaS platforms.

In this paper, we describe some nuances in DT config-

uration that is valid in the context of re-usable assets,

shared infrastructure, and desired integration with external

world. We believe that the ability to reuse DT assets on

DTaaS will make it cheaper and easier to get started with

DTs.

Table 4. Communication times for local and remote MQTT
servers with and without network stress averaged over 500
measures each.

Performance evaluation

Configuration Avg. time Std. deviation

Local MQTT (no iPerf) 1047 ms 278 ms
Remote MQTT (no iPerf) 1732 ms 465 ms
Local MQTT (with iPerf) 1795 ms 269 ms

Talasila et al. 307



Acknowledgements

The authors thank in no particular order the successful discus-

sions and feedback provided by the DIGITbrain technical coordi-

nation committee, Daniel Lehner, Mirgita Frasheri, Martin

Sachenbacher, Gianmaria Bullegas and Omar Nachawati. They

also thank in no particular order Artin Ghalamkary, Asger

Breinholm, Astitva Sehgal, Cesar Vela, Emre Temel, Karsten

Malle, Linda Nguyen, Mads Kelberg, Mathias Brændgaard,

Nicklas Pedersen, Oliver Geneser, Omar Suleiman, and Phillip

Jensen for contributing to the development of DTaaS platform.

They thank Alberto Bonizzi, Alejandro Labarias, Henrik Ejersbo,

Lucia Royo, Mirgita Frasheri, Morten Haahr Kristensen, and

Valdemar Tang for generously contributing exemplar case

studies.

Funding

This work has been partially supported by the EU Horizon 2020

projects DIGITbrain and HUBCAP and the Poul Due Jensen

foundation, as well as the RCN grants PeTWIN (grant no.

294600), SIRIUS (grant no. 237898) and the German Federal

Ministry for Economic Affairs and Climate Action, due to a reso-

lution of the German Bundestag in the context of the project

O5G-N-IoT.

Supplemental material

The source code for the Digital Twin as a Service software is

available at: https://github.com/INTO-CPS-Association/DTaaS.

ORCID iDs

Prasad Talasila https://orcid.org/0000-0002-8973-2640

Cláudio Gomes https://orcid.org/0000-0003-2692-9742

Santiago Gil https://orcid.org/0000-0002-1789-531X

References

1. Böttjer T, Tola D, Kakavandi F, et al. A review of unit level

digital twin applications in the manufacturing industry. CIRP

J Manuf Sci Technol 2023; 45: 162–189.

2. Naseri F, Gil S, Barbu C, et al. Digital twin of electric vehicle

battery systems: comprehensive review of the use cases,

requirements, and platforms. Renew Sust Energ Rev 2023;

179: 113280.

3. Tao F, Xiao B, Qi Q, et al. Digital twin modeling. J Manuf

Syst 2022; 64: 372–389.

4. Zambrano V, Mueller-Roemer J, Sandberg M, et al. Industrial

digitalization in the industry 4.0 era: classification, reuse and

authoring of digital models on digital twin platforms. Array

2022; 14: 100176.

5. Lehner D, Pfeiffer J, Tinsel E-F, et al. Digital twin platforms:

requirements, capabilities, and future prospects. IEEE

Software 2022; 39: 53–61.

6. Abburu S, Berre AJ, Jacoby M, et al. COGNITWIN —hybrid

and cognitive digital twins for the process industry. In:

Proceedings of the 2020 IEEE international conference on

engineering, technology and innovation (ICE/ITMC), Cardiff,

15–17 June 2020, pp. 1–8. New York: IEEE.

7. Aziz A, Chouhan SS, Schelén O, et al. Distributed digital

twins as proxies-unlocking composability and flexibility for

purpose-oriented digital twins. IEEE Access 2023; 11:

137577–137593.

8. Aheleroff S, Xu X, Zhong RY, et al. Digital Twin as a

Service (DTaaS) in industry 4.0: an architecture reference

model. Adv Eng Inform 2021; 47: 101225.

9. Feng H, Gomes C, Gil S, et al. Integration of the Mape-K

loop in digital twins. In: Proceedings of the 2022 annual

modeling and simulation conference (ANNSIM), San Diego,

CA, 18–20 July 2022. New York: IEEE.

10. [O5G-N-IoT] Campusnetzwerke für Krisenszenarien, 2024,

https://o5g-n-iot.de/ (accessed 6 June 2024).

11. Talasila P, Gomes C, Mikkelsen PH, et al. Digital twin as a

service (DTaaS): a platform for digital twin developers and

users. In: Proceedings of the 2023 IEEE international con-

ference on Digital Twin (Digital Twin 2023), Portsmouth,

28–31 August 2023. New York: IEEE.

12. Grieves M and Vickers J. Digital twin: mitigating unpredict-

able, undesirable emergent behavior in complex systems. In:

Kahlen FJ, Flumerfelt S and Alves A (eds) Transdisciplinary

perspectives on complex systems. Cham: Springer, 2017, pp.

85–113.

13. Oakes BJ, Gomes C, Larsen PG, et al. Examining model

qualities and their impact on digital twins. In: Proceedings

of the 2023 annual modeling and simulation conference

(ANNSIM), Hamilton, ON, Canada, 23–26 May 2023, pp.

220–232. New York: IEEE.

14. Kritzinger W, Karner M, Traar G, et al. Digital twin in man-

ufacturing: a categorical literature review and classification.

IFAC PapersOnLine 2018; 51: 1016–1022.

15. VanDerHorn E and Mahadevan S. Digital Twin: generaliza-

tion, characterization and implementation. Decis Support

Syst 2021; 145: 113524.

16. Gil S, Mikkelsen PH, Gomes C, et al. Survey on open-source

digital twin frameworks–a case study approach. Software

Pract Exper 2024; 54: 929–960.

17. Oakes B, Parsai A, Mierlo SV, et al. Improving digital twin

experience reports. In: Proceedings of the 9th international

conference on model-driven engineering and software devel-

opment (MODELSWARD), Vienna, 8–10 February 2021.

Setúbal: SciTePress—Science and Technology Publications.

18. Lee J, Bagheri B and Kao HA. A cyber-physical systems

architecture for industry 4.0-based manufacturing systems.

Manuf Lett 2015; 3: 18–23.

19. Lu Y, Liu C, Wang KI-K, et al. Digital twin-driven smart

manufacturing: connotation, reference model, applications

and research issues. Robot Cim: Int Manuf 2020; 61: 101837.

20. Dalibor M, Heithoff M, Michael J, et al. Generating custo-

mized low-code development platforms for digital twins. J

Comput Languag 2022; 70: 101117.

21. Talasila P, Crăciunean DC, Bogdan-Constantin P, et al.

Comparison between the HUBCAP and DIGITBrain plat-

forms for model-based design and evaluation of digital twins.

In: Cerone A, Autili M, Bucaioni A, et al. (eds) Software

engineering and formal methods (Lecture notes in computer

science (LNCS); Including subseries lecture notes in artifi-

cial intelligence and lecture notes in bioinformatics), vol.

13230. Berlin; Heidelberg: Springer-Verlag, pp. 238–244.

308 Simulation: Transactions of the Society for Modeling and Simulation International 101(3)



22. DIGITbrain establishing a modular approach to digital twins

for manufacturing, 2024, https://digitbrain.eu/ (accessed 6

June 2024).

23. Mao R, Li YJ and Zhang H. Digital twin-based research in

the maritime industry: a brief survey. In: Proceedings of the

49th annual conference of the IEEE industrial electronics

society (IECON 2023), Singapore, 16–19 October 2023, pp.

1–6. New York: IEEE.

24. Liu C, Zheng P and Xu X. Digitalisation and servitisation of

machine tools in the era of industry 4.0: a review. Int J Prod

Res 2023; 61: 4069–4101.

25. Zhang H, Li G, Hatledal LI, et al. A digital twin of the

research vessel gunnerus for lifecycle services: outlining key

technologies. IEEE Robot Autom Mag 2023; 30: 6–19.

26. Petrova-Antonova D, Spasov I, Krasteva I, et al. A digital

twin platform for diagnostics and rehabilitation of multiple

sclerosis. In: Gervasi O, Murgante B, Misra S, et al. (eds)

Computational science and its applications (ICCSA 2020):

20th international conference, Cagliari, Italy, July 1–4,

2020, Proceedings, Part I. Berlin; Heidelberg: Springer-

Verlag, pp. 503–518.

27. McKee D. Platform stack architectural framework: an intro-

ductory guide. In: A digital twin consortium white paper,

2023, https://www.digitaltwinconsortium.org/wp-content/

uploads/sites/3/2023/07/Platform-Stack-Architectural-

Framework-2023-07-11.pdf

28. Hogan A, Blomqvist E, Cochez M, et al. Knowledge graphs.

ACM Comput Surv 2022; 54: 71.

29. Sahlab N, Kamm S, Müller T, et al. Knowledge graphs as

enhancers of intelligent digital twins. In: Proceedings of the

2021 4th IEEE international conference on industrial cyber-

physical systems (ICPS), Victoria, BC, Canada, 10–12 May

2021, pp. 19–24. New York: IEEE.

30. Waszak M, Lam AN, Hoffmann V, et al. Let the asset

decide: digital twins with knowledge graphs. In: Proceedings

of the 2022 IEEE 19th international conference on software

architecture companion (ICSA-C), Honolulu, HI, 12–15

March 2022, pp. 35–39. New York: IEEE.

31. Zheng X, Lu J and Kiritsis D. The emergence of cognitive

digital twin: vision, challenges and opportunities. Int J Prod

Res 2022; 60: 7610–7632.

32. Li Y, Chen J, Hu Z, et al. Co-simulation of complex engi-

neered systems enabled by a cognitive twin architecture. Int

J Prod Res 2022; 60: 7588–7609.

33. Li H, Wang G, Lu J, et al. Cognitive twin construction for

system of systems operation based on semantic integration

and high-level architecture. Integr Comput Aided Eng 2022;

29: 277–295.

34. Pfeiffer J, Lehner D, Wortmann A, et al. Modeling capabil-

ities of digital twin platforms—old wine in new bottles? J

Object Technol 2022; 21: 3.

35. Digital twins definition language, 2024, https://github.com/

Azure/opendigitaltwins-dtdl (accessed 6 June 2024).

36. Vorto language for digital twins, 2024, https://github.com/

eclipse/vorto/blob/development/docs/vortolang-1.0.md

(accessed 6 June 2024).

37. Connect, command and control IoT devices: Eclipse Hono,

2024, https://eclipse.dev/hono (accessed 6 June 2024).

38. Eclipse Ditto: open source framework for digital twins in

the IoT, 2024, https://eclipse.dev/ditto (accessed 6 June

2024).

39. Digital twins made easy—AWS IoT TwinMaker—Amazon

Web Services, 2024, https://aws.amazon.com/de/iot-twin-

maker/ (accessed 6 June 2024).

40. Eclipse BaSyx, 2024, https://eclipse.dev/basyx/ (accessed 6

June 2024).

41. Plattform Industrie 4.0. Reference Architectural Model

Industrie 4.0 (RAMI 4.0)—an introduction. Technical report,

ZVEI—German Electrical and Electronic Manufacturers

Association, 2016, https://ec.europa.eu/futurium/en/system/

files/ged/a2-schweichhart-reference_architectural_model_in

dustrie_4.0_rami_4.0.pdf

42. International Electrotechnical Commission (IEC) 63278-

1:2023. Asset administration shell for industrial applica-

tions—Part 1: asset administration shell structure (Geneva:

IEC, 2023), https://webstore.iec.ch/publication/65628

43. Ferko E, Bucaioni A, Pelliccione P, et al. Standardisation in

digital twin architectures in manufacturing. In: Proceedings

of the 2023 IEEE 20th international conference on software

architecture (ICSA), L’Aquila, 13–17 March 2023, pp. 70–

81. New York: IEEE.

44. Ferko E, Bucaioni A and Behnam M. Architecting digital

twins. IEEE Access 2022; 10: 50335–50350.

45. Lehner D, Gil S, Mikkelsen PH, et al. An architectural extension

for digital twin platforms to leverage behavioral models. In:

Proceedings of the 2023 IEEE 19th international conference on

automation science and engineering (CASE), Auckland, New

Zealand, 26–30 August 2023, pp. 1–8. New York: IEEE.

46. Stojanovic L, Usländer T, Volz F, et al. Methodology and

tools for digital twin management—the FA3ST approach.

IoT 2021; 2: 717–740.

47. Steindl G and Kastner W. Semantic microservice framework

for digital twins. Appl Sci 2021; 11: 5633.

48. Ciavotta M, Maso GD, Rovere D, et al. Towards the digital

factory: a microservices-based middleware for real-to-digital

synchronization. In: Bucchiarone A, Dragoni N, Dustdar S,

et al. (eds) Microservices: science and engineering. Cham:

Springer, 2020, pp. 273–297.

49. Reiterer SH, Balci S, Fu D, et al. Continuous integration for

vehicle simulations. In: Proceedings of the 2020 25th IEEE

international conference on emerging technologies and fac-

tory automation (ETFA), Vienna, 8–11 September 2020, vol.

1, pp. 1023–1026. New York: IEEE.

50. Beetz F and Harrer S. GitOps: the evolution of DevOps?

IEEE Software 2021; 39: 70–75.

51. Feng H, Gomes C, Thule C, et al. Introduction to Digital

Twin Engineering. In: Proceedings of the 2021 annual mod-

eling and simulation conference (ANNSIM), Fairfax, VA,

19–22 July 2021. New York: IEEE.

52. Convent L, Hungerecker S, Leucker M, et al. TeSSLa: tem-

poral stream-based specification language. In: Massoni T

and Mousavi MR (eds) Formal methods: foundations and

applications. Cham: Springer, 2018, pp. 144–162.

53. TeSSLa: a convenient language for specification and verifi-

cation of your system, 2024, https://www.tessla.io/ (accessed

6 June 2024).

Talasila et al. 309



54. Steinkraus KH, Hwa YB, Van Buren JP, et al. Studies on

tempeh—an Indonesian Fermented soybean food. J Food

Sci 1960; 25: 777–788.

55. Leucker M, Sachenbacher M and Vosteen LB. Digital twin

for rescue missions —a case study. In: Proceedings of the

FMDT 2023: workshop on applications of formal methods

and digital twins (CEUR), Lübeck, 6 March 2023, vol. 3507.

CEUR-WS Team.

56. Esterle L, Gomes C, Frasheri M, et al. Digital twins for col-

laboration and self-integration. In: Proceedings of the 2021

IEEE international conference on autonomic computing and

self-organizing systems companion (ACSOS-C), Washington,

DC, 27 September–1 October 2021. New York: IEEE.

57. Functional Mock-up Interface, 2024, https://fmi-standar-

d.org/ (accessed 6 June 2024).

58. Thule C, Lausdahl K, Gomes C, et al. Maestro: the INTO-

CPS co-simulation framework. Simul Model Pract Th 2019;

92: 45–61.

59. OpenFOAM, 2024, https://www.openfoam.com/ (accessed 6

June 2024).

60. TensorFlow, 2024, https://www.tensorflow.org/ (accessed 6

June 2024).

61. MathWorks—makers of MATLAB and Simulink, 2024,

https://www.mathworks.com (accessed 6 June 2024).

62. SciPy: fundamental algorithms for scientific computing in

Python, 2024, https://scipy.org/ (accessed 6 June 2024).

63. PyTorch, 2024, https://pytorch.org/ (accessed 6 June 2024).

64. Talasila P, Mikkelsen PH, Gil S, et al. Realising digital twins.

In: Fitzgerald J, Gomes C and Larsen PG (eds) The engineer-

ing of digital twins. Cham: Springer, 2024, pp. 225–256.

65. International Organization for Standardization (ISO)

23247:2021(E). Automation systems and integration—

digital twin framework for manufacturing (Geneva: ISO,

2021), https://www.iso.org/standard/78743.html

66. Feng H, Gomes C, Thule C, et al. The incubator case study

for Digital Twin engineering. Technical report, 2021, https://

arxiv.org/abs/2102.10390

67. Kamburjan E and Johnsen EB. Knowledge structures over

simulation units. In: Proceedings of the 2022 annual model-

ing and simulation conference (ANNSIM), San Diego, CA,

18–20 July 2022, pp. 78–89. New York: IEEE.

68. HUBCAP, 2024, https://www.hubcap.eu/ (accessed 6 June

2024).

69. Cimatti A, Tian C and Tonetta S. Assumption-based runtime

verification of infinite-state systems. In: Proceedings of the

runtime verification: 21st international conference (RV

2021), Los Angeles, CA, 11–14 October 2021, pp. 207–227.

Berlin; Heidelberg: Springer.

70. Kiss T, Kacsuk P, Kovacs J, et al. Micado—microservice-

based cloud application-level dynamic orchestrator. Future

Gener Comp Sy 2019; 94: 937–946.

71. CP—SENS—cyber-physical sensing for machinery and

structures, 2024, https://digit.au.dk/research-projects/cp-sens

(accessed 6 June 2024).

72. The C4 model for visualising software architecture, 2024,

https://c4model.com/ (accessed 6 June 2024).

73. Huang H and Xu X. Advancing digital twin implementation

using edge adapters based on containerization. In: Proceedings

of the 2023 IEEE 19th international conference on automation

science and engineering (CASE), Auckland, New Zealand,

26–30 August 2023, pp. 1–6. New York: IEEE.

74. Larsen PG, Talasila P and Fitzgerald J. Towards the compo-

sition of digital twins. In: Foster S and Sampaio A (eds) The

application of formal methods: essays dedicated to Jim

Woodcock on the occasion of his retirement. Cham:

Springer, 2024, pp. 103–122.

75. Digital Twin as a Service (DTaaS) CLI, 2024, https://

pypi.org/project/dtaas/ (accessed 6 June 2024).

76. InfluxData. InfluxDB time series data platform, 2024,

https://www.influxdata.com/ (accessed 6 June 2024).

77. MongoDB. MongoDB: the developer data platform, 2024,

https://www.mongodb.com/ (accessed 6 June 2024).

78. RabbitMQ. RabbitMQ: one broker to queue them all, 2024,

https://www.rabbitmq.com/ (accessed 6 June 2024).

79. Eclipse Mosquitto, 2024, https://mosquitto.org/ (accessed 6

June 2024).

80. OPC Foundation, 2024, https://opcfoundation.org/ (accessed

6 June 2024).

81. Examples to demonstrate the features of DTaaS software,

2024, https://github.com/INTO-CPS-Association/DTaaS-

examples (accessed 6 June 2024).

82. Grafana: the open observability platform, 2024, https://grafa-

na.com/ (accessed 6 June 2024).

83. YAML Ain’t Markup language, 2024, http://yaml.org

(accessed 6 June 2024).

84. Jensen AM, Schoerghofer-Queiroz A, Ulriksen MD, et al.

Digital twin as a service for damage prognosis of offshore

wind turbine foundations. In: Proceedings of the 2024 inter-

national conference on noise and vibration engineering,

Leuven, 9–11 September 2024.

85. Tekinerdogan B, Blouin D, Vangheluwe H, et al. (eds).

Multi-paradigm modelling approaches for cyber-physical

systems. Amsterdam: Elsevier, 2020.

86. Junghanns A, Blochwitz T, Bertsch C, et al. The functional

mock—up interface 3.0 —new features enabling new applica-

tions. In: Proceedings of the 14th international Modelica con-

ference, Linköpings Universitet, Linköping, 20–24 September

2021. Linköping: Linköping University Electronic Press.

87. Gmsh: a three-dimensional finite element mesh generator

with built-in pre- and post-processing facilities, 2024, https://

gmsh.info/ (accessed 23 September 2024).

88. Eclipse Vorto, 2024, https://eclipse.dev/vorto/ (accessed 6

June 2024).

89. Frasheri M, Ejersbo H, Thule C, et al. RMQFMU: bridging

the real world with co-simulation for practitioners. In:

Proceedings of the 19th international overture workshop,

Aarhus, Denmark (ed HD Macedo, C Thule and K Pierce).

90. Gil S, Oakes BJ, Gomes C, et al. Toward a systematic report-

ing framework for digital twins: a cooperative robotics case

study. Simulation. Epub ahead of print 2 August 2024. DOI:

10.1177/00375497241261406.

91. Feng H, Gomes C, Sandberg M, et al. Developing a physical

and digital twin: an example process model. In: Proceedings of

the 2021 ACM/IEEE international conference on model driven

engineering languages and systems companion (MODELS-C),

Fukuoka, Japan, 10–15 October 2021. New York: IEEE.

92. TeSSLa Telegraf connector, 2024, https://tessla.io/blog/

telegrafConnector/ (accessed 6 June 2024).

310 Simulation: Transactions of the Society for Modeling and Simulation International 101(3)



93. Lumer-Klabbers G, Hausted JO, Kvistgaard JL, et al.

Towards a digital twin framework for autonomous robots.

In: Proceedings of the 2021 IEEE 45th annual computers,

software, and applications conference (COMPSAC), Madrid,

12–16 July 2021, pp. 1254–1259. New York: IEEE.

94. Gil S, Mikkelsen PH, Tola D, et al. A modeling approach

for composed digital twins in cooperative systems. In:

Proceedings of the 2023 IEEE 28th international conference

on emerging technologies and factory automation (ETFA),

Sinaia, 12–15 September 2023, pp. 1–8. New York: IEEE.

95. Gomes C, Thule C, Broman D, et al. Co-simulation: a sur-

vey. ACM Comput Surv 2018; 51: 49.

96. Larsen PG, Esterle L, Fitzgerald J, et al. Fault injection in

co-simulation and digital twins for cyber-physical robotic

systems. In: Haxthausen AE, Huang WI and Roggenbach M

(eds) Applicable formal methods for safe industrial products:

essays dedicated to Jan Peleska on the occasion of his 65th

birthday. Cham: Springer, 2023, pp. 222–236.

97. Ejersbo H, Lausdahl K, Frasheri M, et al. fmiSwap: runtime

swapping of models for co-simulation and digital twins,

2023, https://arxiv.org/abs/2304.07328

98. iPerf—the ultimate speed test tool for TCP, UDP and SCTP,

2024, https://iperf.fr/ (accessed 6 June 2024).

Author biographies

Prasad Talasila is a researcher and academic staff at

Aarhus University. He holds a PhD from Birla Institute of

Technology and Science, Pilani, India. His research inter-

ests are in the domains of digital twins, cyber-physical

systems and software engineering. He develops software

tools and platforms for small and medium enterprises to

help them adopt the latest research results from the digital

twins domain.

Cláudio Gomes received the BSc and MSc degrees in

Computer Science from the New University of Lisbon in

2013, where he graduated with honors. He earned his PhD

in Computer Science from the University of Antwerp in

2019, focusing on property preservation in co-simulation.

Since 2022, he has been an Assistant Professor at the

Department of Electrical and Computer Engineering,

Aarhus University, Denmark. From 2020 to 2022, he was

a Post-doctoral Researcher at the same institution, follow-

ing a brief tenure as a Visiting Researcher at Carnegie

Mellon University in 2019.

Lars B Vosteen received his BSc in Physics from Justus-

Liebig-University Gießen in 2018, focusing on machine

learning applications. He earned his MSc in IT Security

from the University of Lübeck in 2022, researching 5G

technology and privacy in machine learning. Currently, he

is a Scientific Assistant at the University of Lübeck, pursu-

ing a PhD on domain-specific languages for digital twins.

Hannes Iven is currently studying for his BSc in IT

Security at the University of Lübeck, Germany. He is also

employed as a student research assistant at the Institute

for Software Engineering and Programming Languages

working on digital twins for emergency response.

Martin Leucker received his Diploma in Mathematics in

1996 and his PhD in Computer Science in 2002, both from

RWTH Aachen University. He completed his Habilitation

at the Technical University of Munich in 2007. Since

2010, he has been the Director of the Institute for

Software Engineering and Programming Languages at the

University of Lübeck. His research interests include soft-

ware engineering, formal methods, model checking, and

runtime verification, with a focus on applications in

energy, medical technology, and automotive systems. He

also serves as CEO of UniTransferKlinik Lübeck GmbH.

Santiago Gil is a post-doctoral researcher at the

Department of Electrical and Computer Engineering,

Aarhus University, Denmark, where he completed his

PhD degree in 2024. He completed his bachelor’s and

master’s degrees in Colombia and moved to Denmark to

pursue his PhD studies. His research interests include digi-

tal twins, cyber-physical systems, co-simulation, Internet

of Things, and digital transformation.

Peter H Mikkelsen holds a BSc in Electronics and an

MSc in Computer Engineering, both from Aarhus

University, earned in 1998 and 2012, respectively. His

career has been dedicated to embedded real-time systems,

with extensive experience in this field. Currently, he is

pursuing a PhD while serving as a lecturer in the

Department of Electrical and Computer Engineering at

Aarhus University, Denmark.

Eduard Kamburjan is Senior Researcher at the

University of Oslo, where he works since 2020. He holds

a PhD from the Technical University of Darmstadt and his

research focuses on software engineering for and with

knowledge graphs and ontologies, as well as self-adaptive

Digital Twins.

Peter G Larsen is both deputy-head of section and pro-

fessor in the Department of Electrical and Computer

Engineering at Aarhus University, where he also leads the

Cyber-Physical Systems research group as well as the

Center for Digitalisation, Big Data, and Data Analytics

(DIGIT) and the AU Center for Digital Twins. After receiv-

ing his MSc in Electronic Engineering at the Technical

University of Denmark in 1988, he worked in industry

before returning to complete an industrial PhD in 1995. He

is the author of more than 300 papers published in journals,

books and conference proceedings, and several books.

Talasila et al. 311




